Инд. авторы: Khakimzyanov G., Shokina N.Y., Dutykh D., Mitsotakis D.
Заглавие: A new run-up algorithm based on local high-order analytic expansions
Библ. ссылка: Khakimzyanov G., Shokina N.Y., Dutykh D., Mitsotakis D. A new run-up algorithm based on local high-order analytic expansions // Journal of Computational and Applied Mathematics. - 2016. - Vol.298. - P.82-96. - ISSN 0377-0427. - EISSN 1879-1778.
Внешние системы: DOI: 10.1016/j.cam.2015.12.004; РИНЦ: 26807732; SCOPUS: 2-s2.0-84951320831; WoS: 000369454900008;
Реферат: eng: The practically important problem of the wave run-up is studied in this article in the framework of Nonlinear Shallow Water Equations (NSWE). The main novelty consists in the usage of high order local asymptotic analytical solutions in the vicinity of the shoreline. Namely, we use the analytical techniques introduced by S. Kovalevskaya and the analogy with the compressible gas dynamics (i.e. gas outflow problem into the vacuum). Our run-up algorithm covers all the possible cases of the wave slope on the shoreline and it incorporates the new analytical information in order to determine the shoreline motion to higher accuracy. The application of this algorithm is illustrated in several important practical examples. Finally, the simulation results are compared with the well-known analytical and experimental predictions. © 2015 Elsevier B.V. All rights reserved.
Ключевые слова: Wave runup; Non-linear shallow water equations; Local asymptotic; High-order; Finite differences; Compressible gas dynamics; Asymptotic expansion; Finite volume method; Equations of motion; Compressibility of gases; Algorithms; Wave run-up; Nonlinear shallow water equations; Finite volumes; Finite differences; Asymptotic expansion; Gas dynamics; Nonlinear equations;
Издано: 2016
Физ. характеристика: с.82-96
Цитирование: 1. V.V. Titov, and F.I. González Implementation and testing of the method of splitting tsunami (MOST) model. Technical Report ERL PMEL-112 1997 Pacific Marine Environmental Laboratory, NOAA 2. C.E. Synolakis The runup of solitary waves J. Fluid Mech. 185 1987 523 545 3. C.E. Synolakis, E.N. Bernard, V.V. Titov, U. Kânoglu, and F.I. González Validation and verification of tsunami numerical models Pure Appl. Geophys. 165 2008 2197 2228 4. I. Didenkulova, and E.N. Pelinovsky Run-up of long waves on a beach: the influence of the incident wave form Oceanology 48 1 2008 1 6 5. G.F. Carrier, and H.P. Greenspan Water waves of finite amplitude on a sloping beach J. Fluid Mech. 2 1958 97 109 6. M. Antuono, and M. Brocchini The boundary value problem for the nonlinear shallow water equations Stud. Appl. Math. 119 2007 73 93 7. C.E. Synolakis Tsunami runup on steep slopes: How good linear theory really is Nat. Hazards 4 2-3 1991 221 234 8. S.C. Medeiros, and S.C. Hagen Review of wetting and drying algorithms for numerical tidal flow models Internat. J. Numer. Methods Fluids 71 4 2013 473 487 9. V.M. Lyatkher, and A.N. Militeev Calculation of run-up on a slope for long gravitational waves Oceanology 14 1 1974 37 42 10. N. Kobayashi, G.S. DeSilva, and K.D. Watson Wave transformation and swash oscillation on gentle and steep slopes J. Geophys. Res. 94 C1 1989 951 966 11. S. Hibberd, and D.H. Peregrine Surf and run-up on a beach: a uniform bore J. Fluid Mech. 95 1979 323 345 12. J.J. Stoker Water Waves, The Mathematical Theory with Applications 1958 Wiley 13. G. Bellotti, and M. Brocchini On the shoreline boundary conditions for Boussinesq-type models Internat. J. Numer. Methods Fluids 37 4 2001 479 500 14. M. Brocchini, R. Bernetti, A. Mancinelli, and G. Albertini An efficient solver for nearshore flows based on the WAF method Coast. Eng. 43 2001 105 129 15. S.P. Bautin, S.L. Deryabin, A.F. Sommer, G.S. Khakimzyanov, and N.Y. Shokina Use of analytic solutions in the statement of difference boundary conditions on a movable shoreline Russian J. Numer. Anal. Math. Modelling 26 4 2011 353 377 16. S.P. Bautin, and S.L. Deryabin Mathematical Modelling of Ideal Gas Outflow into Vacuum 2005 Nauka Novosibirsk 17. S.P. Bautin Characteristic Cauchy Problem and its Applications in Gas Dynamics 2009 Nauka Novosibirsk 18. A.J.C. de Saint-Venant Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit C. R. Acad. Sci. Paris 73 1871 147 154 19. W. Kosinski Gradient catastrophe in the solution of nonconservative hyperbolic systems J. Math. Anal. Appl. 61 3 1977 672 688 20. E. Godlewski, and P.-A. Raviart Hyperbolic Systems of Conservation Laws 1990 Ellipses Paris 21. G.B. Folland Introduction to Partial Differential Equations second ed. 1995 Princeton University Press Princeton 22. J.J. Stoker Water Waves: The Mathematical Theory with Applications 1992 John Wiley & Sons, Inc. Hoboken, NJ, USA 23. P. Bogacki, and L.F. Shampine A 3(2) pair of Runge-Kutta formulas Appl. Math. Lett. 2 4 1989 321 325 24. Y.I. Shokin, Y.V. Sergeeva, and G.S. Khakimzyanov Predictor-corrector scheme for the solution of shallow water equations Russian J. Numer. Anal. Math. Modelling 21 5 2006 459 479 25. T.J. Barth, and M. Ohlberger Finite Volume Methods: Foundation and Analysis 2004 John Wiley & Sons, Ltd. Chichester, UK 26. R. Courant, K. Friedrichs, and H. Lewy Über die partiellen Differenzengleichungen der mathematischen Physik Math. Ann. 100 1 1928 32 74 27. C. Arvanitis, and A.I. Delis Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids SIAM J. Sci. Comput. 28 5 2006 1927 1956 28. C.E. Synolakis The runup of long waves (Ph.D. thesis) 1986 California Institute of Technology 29. F. Serre Contribution à l'étude des écoulements permanents et variables dans les canaux Houille Blanche 8 1953 830 872 30. A.E. Green, and P.M. Naghdi A derivation of equations for wave propagation in water of variable depth J. Fluid Mech. 78 1976 237 246 31. D. Dutykh, D. Clamond, P. Milewski, and D. Mitsotakis Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations Eur. J. Appl. Math. 24 05 2013 761 787 32. G. Pedersen, and B. Gjevik Run-up of solitary waves J. Fluid Mech. 135 1983 283 299 33. G.F. Carrier, T.T. Wu, and H. Yeh Tsunami run-up and draw-down on a plane beach J. Fluid Mech. 475 2003 79 99 34. O. Bokhove Flooding and drying in discontinuous galerkin finite-element discretizations of shallow-water equations. part 1: One dimension J. Sci. Comput. 22-23 2005 47 82 35. F. Marche, P. Bonneton, P. Fabrie, and N. Seguin Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes Internat. J. Numer. Methods Fluids 53 5 2007 867 894 36. D. Dutykh, R. Poncet, and F. Dias The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation Eur. J. Mech. B Fluids 30 6 2011 598 615 37. A.I. Delis, I.K. Nikolos, and M. Kazolea Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows Arch. Comput. Methods Eng. 18 1 2011 57 118 38. M.E. Vazquez-Cendon Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry J. Comput. Phys. 148 1999 497 526 39. P. Bohorquez, and M. Rentschler Hydrodynamic instabilities in well-balanced finite volume schemes for frictional shallow water equations. The kinematic wave case J. Sci. Comput. 48 1-3 2010 3 15 40. M. Antuono, L. Soldini, and M. Brocchini On the role of the Chezy frictional term near the shoreline Theor. Comput. Fluid Dyn. 26 1-4 2012 105 116 41. D. Dutykh, T. Katsaounis, and D. Mitsotakis Finite volume schemes for dispersive wave propagation and runup J. Comput. Phys. 230 8 2011 3035 3061 42. D. Dutykh, and H. Kalisch Boussinesq modeling of surface waves due to underwater landslides Nonlinear Processes Geophys. 20 3 2013 267 285 43. M. Tissier, P. Bonneton, F. Marche, F. Chazel, and D. Lannes Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model J. Coast. Res. 64 2011 603 607 44. F. Shi, J.T. Kirby, J.C. Harris, J.D. Geiman, and S.T. Grilli A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation Ocean Modelling 43-44 2012 36 51 45. F. Løvholt, and G. Pedersen Instabilities of Boussinesq models in non-uniform depth Internat. J. Numer. Methods Fluids 61 6 2009 606 637 46. G. Bellotti, and M. Brocchini On using Boussinesq-type equations near the shoreline: a note of caution Ocean Eng. 29 2002 1569 1575