Инд. авторы: | Коробицын В.А. |
Заглавие: | Моделирование кавитационного обтекания тел |
Библ. ссылка: | Коробицын В.А. Моделирование кавитационного обтекания тел // Вычислительные технологии. - 2015. - Т.20. - № 5. - С.85-96. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 24498156; |
Реферат: | rus: Приведены результаты исследований течения идеальных сжимаемых и несжимаемых жидкостей с переменными границами, контактирующих с твердыми телами в плоских и осесимметричных пространствах постоянной и переменной связности. Численно моделируется процесс начального формирования пузыря при кавитационном обтекании плоской пластины. В решении одновременно присутствуют области одномерного стационарного и двумерного нестационарного течений, а также область одномерного течения в окрестности центра симметрии пластины. Численно исследован процесс заполнения подводной осесимметричной шахты. Смоделирован эффект гидродинамического удара при отрыве газового пузыря от шахтной полости. eng: The research addresses the development of efficient mathematical models and algorithms which described interaction between solids and liquids with bubbles. Work in this direction was initiated by demands from the industry. A technological basis for the construction of the algorithmic finite difference models for fluid flows around rigid and elastic bodies was developed. The problem was examined in 2D space with variable connectivity areas which include free and contact boundaries. The results are used in the civil and defence fields. The author conducted the numerical simulations of fluid flows in multiply connected domains. Currently, research in this direction is actively progressing. The research is also aimed at the development of the discrete numerical models and algorithms for mathematical modeling of multiphase flows in 2D and 3D media with contact discontinuities and free surfaces. A study how gas cavities in a fluid affect the flow around an axially symmetric rigid body was conducted. A construction of models for rotation of axisymmetric bodies in such flows leading to the formulation of numerical methods was presented. The effect of the hydrodynamic shock appeared when a bubble was released from the shaft gas cavity was confirmed numerically. The software complex designed for mathematical modeling of multiphase flows in the multiply liquid medium in the vicinity of axisymmetric bodies was developed. |
Ключевые слова: | свободная поверхность; каверна; кавитация; многосвязность; non-spherical gas bubble; Potential fluid flow; потенциальное течение жидкости; несферический газовый пузырь; Multiply connected domains; cavitation; cavern; free surface; |
Издано: | 2015 |
Физ. характеристика: | с.85-96 |
Цитирование: | 1. Norkin, M.V., Yakovenko, A.A. Nachal'nyy etap dvizheniya ellipticheskogo tsilindra v ideal'noy neszhimaemoy zhidkosti so svobodnymi granitsami [Short-time dynamics of an elliptical cylinder in an ideal incompressible fluid with free boundaries]. Computational Mathematics and Mathematical Physics. 2012; 52(11):2060-2070. (In Russ.) 2. Norkin, M.V. Nachal'nyy etap dvizheniya ellipticheskogo tsilindra v vyazkoy neszhimaemoy zhidkosti so svobodnoy poverkhnost'yu [Short-time dynamics of an elliptic cylinder moving in a viscous incompressible free-surface flow]. Computational Mathematics and Mathematical Physics. 2012; 52(2):319-329. ( In Russ.) 3. Goodov, A.M. The numerical investigation of phenomenon at the liquid surface under gas bubble collapse. Computational Technologies. 1997; 2(4):49-59. ( In Russ.) 4. Korobitsyn, V.A. Chislennoe modelirovanie mnogosvyaznykh techeniy neszhimaemoy zhidkosti. Zbornik radova. Konferencije MIT 2011, ISBN 978-86-83237-90-6(AU), Beograd; 2012:217-221, available at: www.mit.rs/2011/zbornik-2011.pdf (In Russ.) 5. Korobitsyn, V.A., Pegov, V.I. Numerical analysis of the evolution of an interface between two liquids]. Fluid Dynamics. 1993; 28(5):692-695. 6. Korobitsyn, V.A. Numerical model for axisymmetrical incompressible potential flows. Matematicheskoe Modelirovanie. 1991; 3(10):42-49. ( In Russ.) 7. Korobitsyn, V.A. Bazisnyy raznostnyy metod dlya ortogonal'nykh sistem na poverkhnosti [Basis difference method for orthogonal systems on a surface]. Computational Mathematics and Mathematical Physics. 2011; 51(7):1308--1316. (In Russ.) 8. Korobitsyn, V.A. Kovariantnye preobrazovaniya bazisnykh differentsial'no-raznostnykh skhem na ploskosti [Covariant transformations of basis differential-difference schemes in a plane]. Computational Mathematics and Mathematical Physics. 2011; 51(11):2033-2042. (In Russ.) 9. Korobitsyn, V.A., Shokin, Yu.I. Orthogonal transformations of differential-difference schemes. Introduction to discrete analysis. Russian Journal of Numerical Analysis and Mathematical Modelling. 2014; 29(4):219-230. 10. Ishchenko, A.N., Afanas'eva, S.A., Burkin, V.V., Dyachkovskiy, A.S., Zykov, E.N., Khabibullin, M.V. Raschetno-eksperimental'nyy metod issledovaniya vysokoskorostnogo vzaimodeystviya tel s podvodnymi pregradami [Calculation-experimental method for studying high-speed interaction of bodies with under water]. Uchebnoe posobie. Tomsk: Izdatel'stvo NTL; 2013: 60. (In Russ.) 11. Bubenchikov, A.M., Korobitsyn, V.A., Korobitsyn, D.V., Kotov, P.P., Shokin, Yu.I. Numerical simulation of multiply connected axisymmetric discontinuous incompressible potential flows. Computational Mathematics and Mathematical Physics. 2014; 54(7): 1167-1175, available at: http://link.springer.com/article/10.1134/S0965542514070057 12. Korobitsyn, V.A. Computations of a gas bubble motion in liquid. International Series of Numerical Mathematics. 1992: (106):179-185, available at: http://link.springer.com/chapter/10.1007/978-3-0348-8627-7_20 13. Demin, A.V., Korobitsyn, V.A., Mazurenko, A.I., Khe, A.I. O raschete na dvumernykh lagranzhevykh setkakh techeniy vyazkoy neszhimaemoy zhidkosti so svobodnoy poverkhnost'yu [Calculation of the flows of a viscous incompressible liquid with a free surface on two-dimensional Lagrangian nets]. Computational Mathematics and Mathematical Physics. 1988; 28(11):1719-1729. (In Russ.) 14. Rozhdestvenskiy, B.L., Yanenko, N.N. Sistemy kvazilineynykh uravneniy [Systems of quasilinear equations].Moscow: Nauka; 1978: 688. (In Russ.) |