Инд. авторы: Федорук М.П., Сидельников О.С.
Заглавие: Алгоритмы численного моделирования оптических линий связи на основе многомодовых волокон
Библ. ссылка: Федорук М.П., Сидельников О.С. Алгоритмы численного моделирования оптических линий связи на основе многомодовых волокон // Вычислительные технологии. - 2015. - Т.20. - № 5. - С.105-119. - ISSN 1560-7534. - EISSN 2313-691X.
Внешние системы: РИНЦ: 24498166;
Реферат: rus: Приведены уравнения распространения оптических сигналов в многомодовом волокне со случайным двойным лучепреломлением в режимах сильной и слабой связи мод. Рассмотрены основные численные методы решения данных уравнений. Представлены некоторые результаты численного моделирования многомодовых волоконно-оптических линий связи с использованием описанных уравнений.
Ключевые слова: многомодовое волокно; волоконно-оптическая линия связи; нелинейная волоконная оптика; метод расщепления по физическим процессам; компактная разностная схема; нелинейное уравнение Шрёдингера;
Издано: 2015
Физ. характеристика: с.105-119
Цитирование: 1. Kao, K.C., Hockham, G.A. Dielectric-fibre surface waveguides for optical frequencies. The Proceedings of the Institute of Electrical and Electronics Engineers. 1966; 113(7):1151-1158. 2. Qian, D., Huang, M., Ip, E., Huang, Y., Shao, Y., Hu, J., Wang, T. 101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Los Angeles; 2011: paper PDPB5, doi:10.1364/NFOEC.2011.PDPB5. 3. Zhou, X., Nelson, L.E., Isaac, R., Magill, P.D., Zhu, B., Borel, P., Carlson, K., Peckham, D.W. 12,000km transmission of 100GHz spaced, 8 495-Gb/s PDM time-domain hybrid QPSK-8QAM signals. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Anaheim; 2013: paper OTu2B.4., doi:10.1364/OFC.2013.OTu2B.4. 4. Wizner, P.J., Essiambre, R.-J. Advanced Optical Modulation Formats. The Proceedings of the Institute of Electrical and Electronics Engineers. 2006; 94(5):952-985. 5. Winzer, P.J., Foschini, G.J. Outage calculations for spatially multiplexed fiber links. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Los Angeles; 2011: paper OThO5, doi:10.1364/OFC.2011.OThO5. 6. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Essiambre, R., Winzer, P.J., Peckham, D.W., McCurdy, A., Lingle, R. Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC). Los Angeles; 2011: paper PDPB10, doi:10.1364/OFC.2011.PDPB10. 7. Ip, E., Neng, B., Yue-Kai, H., Mateo, E., Yaman, F., Ming-Jun, L., Bickham, S., Ten, S., Linares, J., Montero, C., Moreno, V., Prieto, X., Tse, V., Kit Man, C., Lau, A., Hwa-yaw, T., Chao, L., Yanhua, L., Gang-Ding, P., Guifang, L. 88×3×112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few-mode fiber amplifier. 37th European Conference and Exhibition on Optical Communication (ECOC). Geneva; 2011: paper Th.13.C.2, doi:10.1364/ECOC.2011.Th.13.C.2. 8. Zhu B., Taunay T.F., Fishteyn M., Liu X., Chandrasekhar S., Yan M.F., Fini J.M., Monberg E.M., Dimarcello F.V. 112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Optical Express. 2011; 19(17):16665-16671. 9. Sakaguchi, J., Puttnam, B.J., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T., Imamura, K., Inaba, H., Mukasa, K., Sugizaki, R., Kobayashi, T., Watanabe, M. 305-Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber. Journal of Lightwave Technology. 2013; 31(4):554-562. 10. Takara, H. 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency. 38th European Conference and Exhibition on Optical Communication (ECOC), Amsterdam; 2012: Th.3.C.1, doi:10.1364/ECEOC.2012.Th.3.C.1. 11. Liu, H., Zheng, X., Liu, M., Zhao, N., Luo, A., Luo, Z., Xu, W., Zhang, H., Zhao, C., Wen, S. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Optical Express. 2014; 22(6):6868-6873. 12. Leunga, A., Shankarb, P.M., Mutharasan, R. A review of fiber-optic biosensors. Sensors Actuators B: Chemistry. 2007; 125(2):688-703. 13. Islam, T., Mahboob, M.R., Khan, S.A., Kumar, L. A Single Chip Integrated Sol-Gel Thin Film LC Sensor for Measuring Moisture in ppm Level. Sensors. 2014; 14(4):1148-1153. 14. Carpenter, J., Eggleton, B., Schroder, J. Reconfigurable spatially-diverse optical vector network analyzer. Optical Express. 2014; 22(3):2706-2713. 15. Mumtaz, S., Essiambre, R., Agrawal, G.P. Nonlinear Propagation in Multimode and Multicore Fibers: Generalization of the Manakov Equations. Journal of Lightwave Technology. 2013; 31(3):398-406. 16. Mecozzi, A., Antonelli, C., Shtaif, M. Nonlinear propagation in multi-mode fibers in the strong coupling regime. Optical Express. 2012; 20(11):11673-11678. 17. Mecozzi, A., Antonelli, C., Shtaif, M. Coupled Manakov equations in multimode fibers with strongly coupled groups of modes. Optical Express. 2012; 20(21):23436-23441. 18. Rademacher, G., Warm, S., Petermann, K. Nonlinear interaction in differential mode delay managed mode-division multiplexed transmission systems. Optical Express. 2015; 23(1):55-60. 19. Agrawal, G.P. Nonlinear Fiber Optics. New York: Academic Press; 1995:592. 20. Fedoruk, M.P., Paasonen, V.I. Compact dissipative scheme for the nonlinear Schrodinger equation. Computational Technologies. 2011; 16(6):68-73. (In Russ.) 21. Taha T., Ablowitz M. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrodinger equation. Journal of Computational Physics. 1984; 55(2):203-230. 22. Chekhovskoy, I.S. Using Pade approximation for solving systems of nonlinear Schrodinger equations by the split - step Fourier method. Computational Technologies. 2015; 20(3):99-108. (In Russ.)