Цитирование: | 1. Mei, C.C., Le Mehaute, B. Note on the equations of long waves over an uneven bottom. Journal of Geophysical Research. 1966; 71(2):393-400.
2. Peregrine, D.H. Long waves on a beach. Journal of Fluid Mechanics. 1967; (27):815-827.
3. Rozhdestvenskiy, B.L., Yanenko, N.N. Sistemy kvazilineynykh uravneniy i ikh prilozheniya k gazovoy dinamike [Systems of quasilinear equations and their application to gas dynamics]. Moscow: Nauka; 1968: 592. (In Russ.)
4. Shokin, Yu.I., Yanenko N.N. Metod differentsial'nogo priblizheniya. Primenenie k gazovoy dinamike. Novosibirsk: Nauka, Sibirskoe otdelenie; 1985: 364. (In Russ.)
5. Fedotova, Z.I., Khakimzyanov, G.S. The basic nonlinear-dispersive hydrodynamic model of long surface waves. Computational Technologies. 2014; 19(6):77-94. (In Russ.)
6. Shokin, Yu.I., Fedotova, Z.I., Khakimzyanov, G.S. Hierarchy of nonlinear models of the hydrodynamics of long surface waves. Doklady Physics. 2015; 60(5):224-228.
7. Ertekin, R.C., Webster, W.C., Wehausen, J.V. Waves caused by a moving disturbance in a shallow channel of finite width. Journal of Fluid Mechanics. 1986; (169):275-292.
8. Zheleznyak, M.I., Pelinovskiy, E.N. Fiziko-matematicheskie modeli nakata tsunami na bereg. Nakat tsunami na bereg: Sbornik nauchykh. trudov [Physico-mathematical models of the tsunami climbing a beach. Tsunami climbing a beach: Collection of scientific papers]. Gorky: Institute Applied Physics Press; 1985: 8-33. (In Russ.)
9. Fedotova, Z.I., Khakimzyanov, G.S. Nonlinear dispersive shallow water equations for a non-stationary bottom. Computational Technologies. 2008; 13(4):114-126. (In Russ.)
10. Fedotova, Z.I., Khakimzyanov, G.S., Dutykh, D. On the energy equation of approximate models in the long-wave hydrodynamics. Russian Journal of Numerical Analysis and Mathematical Modelling. 2014; 29(3):167-178.
11. Su, C.H., Gardner, C.S. Korteweg - de Vries equation and generalizations. III. Derivation of the Korteweg - de Vries equation and Burgers equation. Journal of Mathematical Physics. 1969; 10(3):536-539.
12. Peregrine, D.H. Calculations of the development of an undular bore. Journal of Fluid Mechanics. 1966; 25(2):321-331.
13. Benjamin, T.B., Bona, J.L., Mahony, J.J. Model equations for long waves in nonlinear dispersive systems. Philosophical Transactions of the Royal Society of London. A. 1972; (272):47-78.
14. Whitham, G.B. Linear and nonlinear waves. N.Y.: John Wiley & Sons Inc.; 1974: 636.
15. Pelinovskiy, E.N. Gidrodinamika voln tsunami. [Tsunami Wave Hydrodynamics]. Nizhniy Novgorod: Institute Applied Physics Press; 1996:276. (In Russ.)
16. Olver, P.J. Euler operators and conservation laws of the BBM equation. Mathematical Proceedings of the Cambridge Philosophical Society. 1979; (85):143-160.
17. Hereman, W. Shallow water waves and solitary waves. Mathematics of Complexity and Dynamical Systems (Ed. R.A. Meyers). N.Y.: Springer; 2011:1520-1532.
18. Novikov, V.A., Fedotova, Z.I. Numerical modelling of long wave propagation in bays on the base of simplified Boussinesq model. Collect. Sientific Papers, Proceedings of All-union Conference on Numerical Methods in Wave Hudrodynamics Problems 23-25 Sept., 1990, Rostov-na-Dony. Krasnoyarsk: Computer Center of the Siberian Branch of Academy of Sciences of the USSR; 1991:9-14. (In Russ.)
19. Fedotova, Z.I. On properties of two simplified nonlinearly dispersive models of long wave hydrodynamics. International Journal of Computational Fluid Dynamics. 1998; 10(2):159-171.
20. Khabakhpashev, G.A. Nonlinear evolition equation for moderately long two-dimensional waves on a free surface of viscous liquid. Computational Technologies. 1997; 2(2):94-101. (In Russ.)
21. Litvinenko, A.A., Khabakhpashev, G.A. Numerical modeling of sufficiently long nonlinear two-dimensional waves on water surface in a basin with a gently sloping bottom. Computational Technologies. 1999; 4(3):95-105. (In Russ.)
22. Kim, K.Y., Reid, R.O., Whitaker, R.E. On an open radiational boundary condition for weakly dispersive tsunami waves. Journal of Computational Physics. 1988; (76):327-348.
23. Bogolyubskiy, I.L. Modified equation of a nonlinear string and inelastic interaction of solitons. Pis'ma v Zhurnal eksperimental'noy i teoreticheskoy fiziki. 1976; 24(3):184-186. (In Russ.)
24. Khabakhpashev, G.A. Effect of bottom friction on the dynamics of gravity perturbations. Fluid Dynamics. 1987; 22(3):430-437.
25. Richtmyer, R.D., Morton, K.W. Difference methods for initial-value problems. N.Y.: Interscience Publishers; 1967: 405.
26. Eilbeck, J.C., McGuire, G.R. Numerical study of the regularized long-wave equations 1: Numerical methods. Journal of Computational Physics. 1975; (19):43-57.
27. Samarskii, A.A. The theory of difference schemes. USA: Marcel Dekker; 2001: 788.
28. Kompaniets, L.A. Analysis of difference algoritms for nonlinear dispersive shallow water models. Russian Journal of Numerical Analysis and Mathematical Modelling. 1996; 11(3):205-222.
29. Fedotova, Z.I., Pashkova, V.Yu. Methods of construction and the analysis of difference schemes for nonlinear dispersive models of wave hydrodynamics. Russian Journal of Numerical Analysis and Mathematical Modelling. 1997; 12(2):127-149.
30. Chubarov, L.B., Fedotova, Z.I., Shokin, Yu.I., Einarsson, B.G. Comparative analysis of nonlinear dispersive models of shallow water. International Journal of Computational Fluid Dynamics. 2000; 14(1):55-73.
31. Godunov, S.K., Ryabenkii, V.S. Difference schemes. Translation by E.M. Gelbard. Amsterdam: North-Holland; 1987: 486.
32. LeVeque, R.J. Numerical methods for conservation laws. Berlin: Birkhauser Verlag; 1992: 214.
33. Dutykh, D., Clamond, D., Milewski, P., Mitsotakis, D. Finite volume and pseudospectral schemes for the fully nonlinear 1D Serre equatios. European Journal of Applied Mathematics. 2013; 24(5):761-787.
34. Grue, J., Pelinovsky, E.N., Fructus, D., Talipova, T., Kharif, C. Formation of undular bores and solitary waves in the Strait of Malacca caused by the 26 December 2004 Indian Ocean tsunami. Journal of Geophysical Research. 2008; 113. C05008.
35. Glimsdal, S., Pedersen, G.K., Atakan, K., Harbitz, C.B., Langtangen, H.P., Lovholt, F. Propagation of the Dec. 26, 2004, Indian Ocean Tsunami: Effects of dispersion and source characteristics. International Journal of Fluid Mechanics Research. 2006; 33(1):15-43.
36. Shokin, Yu.I., Chubarov, L.B. The numerical modelling of long wave propagation in the framework of non-linear dispersion models. Computers and Fluids. 1987; 15(3):229-249.
37. Abbott, M.B., Petersen, H.M., Skovgaard, O. On the numerical modelling of short waves in shallow water. Journal of Hydraulic Research. 1978; 16(3):173-204.
38. Abbott, M.B., McCowan, A.D., Warren, I.R. Accuracy of short-wave numerical models. Journal of Hydraulic Engineering. 1984; 110(10):1287-1301.
39. Rygg, O.B. Nonlinearv refraction-diffraction of surface waves in intermediate and shallow water. Coastal Engineering Journal. 1988; 12(3):191-211.
40. Chubarov, L.B., Fedotova, Z.I., Shkuropatskii, D.A. Investigation of computational models of long surface waves in the problem of interaction of a solitary wave with a conic island. Russian Journal of Numerical Analysis and Mathematical Modelling. 1998; 13(4):289-306.
41. Bonneton, P., Barthelemy, E., Chazel, F., Cienfuegos, R., Lannes, D., Marche, F., Tisser, M. Recent advances in Serre - Green - Naghdi modelling for wave transformation, breaking and runup processes. European Journal of Mechanics - B/ Fluids. 2011; (30):589-597.
42. Kompaniets, L.A. On difference schemes for nonlinear dispersive Green - Naghdi and Aleshkov models with improved approximation of dispersion relations. Computational Technologies. 1995; 4(11):144-153. (In Russ.)
43. Nwogu, O. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering. 1993; 119(6):618-638.
44. Wei, G., Kirby, J.T. Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal, and Ocean Engineering. 1995; 121(5):251-261.
45. Barakhnin, V.B., Khakimzyanov, G.S. On the algorithm for one nonlinear dispersive shallow-water model. Russian Journal of Numerical Analysis and Mathematical Modelling. 1997; 12(4):293-317.
46. Ramos, J.I. Explicit finite difference method for the EW and RLW equation. Applied Mathematics and Computation. 2006; (179):622-638.
47. Walkley, M., Berzins, M. A finite element method for the one-dimensional extended Boussinesq equations. International Journal for Numerical Methods in Fluids. 1999; (29):143-157.
48. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D., Grilli, S.T. A high-order adaptive timestepping TVD solver for Boussinesq modelling of breaking waves and coastal inundation. Ocean Modelling. 2012; (43-44):36-51.
49. Kirby, J.T., Shi, F., Tehranirad, B., Harris, J.C., Grilli, S.T. Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling. 2013; (62):39-55.
50. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics. 1995; (294):71-92.
51. Cienfuegos, R., Barthelemy, E., Bonneton, P. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. International Journal for Numerical Methods in Fluids. 2006; (51):1217-1253.
52. Gusev, O.I., Shokina, N.Yu., Kutergin, V.A., Khakimzyanov, G.S. Numerical modelling of surface waves generated by underwater landslide in a reservoir. Computational Technologies. 2013; 18(5):74-90. (In Russ.)
53. Gusev, O.I. Algorithm for surface waves calculation above a movable bottom within the frame of plane nonlinear dispersive model. Computational Technologies. 2014; 19(6):19-40. (In Russ.)
54. Shokin, Yu.I., Beisel, S.A., Gusev, O.I., Khakimzyanov, G.S., Chubarov, L.B., Shokina, N.Yu. Numerical modelling of dispersive waves generated by landslide motion. Bulletin of the South Ural State University. 2014; 7(1):121-133. (In Russ.)
55. Khakimzyanov, G.S., Gusev, O.I., Beisel, S.A., Chubarov, L.B., Shokina, N.Yu. Simulation of tsunami waves generated by submarine landslides in the Black Sea. Russian Journal of Numerical Analysis and Mathematical Modelling. 2015; 30(4):227-237.
56. Gusev, O.I., Khakimzyanov, G.S. Numerical simulation of long surface waves on a rotating sphere within the framework of the full nonlinear dispersive model. Computational Technologies. 2015; 20(3):3-32. (In Russ.)
57. Barakhnin, V.B., Khakimzyanov, G.S. The spliting technique as applied to the solution of the nonlinear dispersive shallow-water equations. Doklady Mathematics. 1999; 59(1):70-72.
58. Khakimzyanov, G.S., Shokin, Yu.I., Barakhnin, V.B., Shokina, N.Yu. Chislennoe mode-lirovanie techenij zhidkosti s poverhnostnymi volnami [Numerical simulation of fluid flows with surface waves. Novosibirsk: FUE Publishing House SB RAS; 2001: 394. (In Russ.)
59. Dao, M.H., Tkalich, P. Tsunami propagation modelling - a sensitivity study. Natural Hazards and Earth System Science. 2007; (7):741-754.
60. Horrillo, J., Kowalik, Z., Shigihara, Y. Wave dispersion study in the Indian Ocean-tsunami of December 26, 2004. Marine Geodesy. 2006; (29):149-166.
61. Khakimzyanov, G.S., Shokina, N.Yu. Adaptive grid method for one-dimensional shallow water equations. Computational Technologies. 2013; 18(3):54-79. (In Russ.)
62. Shokina, N.Yu., Khakimzyanov, G.S. An improved adaptive grid method for onedimensional shallow water equations. Computational Technologies. 2015; 20(4):83-106. (In Russ.)
63. Shokina, N.Yu. To the problem of construction of difference schemes on movable grids. Russian Journal of Numerical Analysis and Mathematical Modelling. 2012; 27(6):603-626.
64. Lovholt, F., Pedersen, G. Instabilities of Boussinesq models in non-uniform depth. International Journal for Numerical Methods in Fluids. 2009; (61):606-637.
|