Инд. авторы: Shary S.P., Sharaya I.A.
Заглавие: On solvability recognition for interval linear systems of equations
Библ. ссылка: Shary S.P., Sharaya I.A. On solvability recognition for interval linear systems of equations // Optimization Letters. - 2016. - Vol.10. - Iss. 2. - P.247-260. - ISSN 1862-4472. - EISSN 1862-4480.
Внешние системы: DOI: 10.1007/s11590-015-0891-6; РИНЦ: 26951591; SCOPUS: 2-s2.0-84957432800; WoS: 000369946200004;
Реферат: eng: The paper considers the problem of recognizing solvability (nonemptiness of the solution set) for interval systems of linear algebraic equations. We introduce a quantitative measure of the membership of a point in the solution set, the so-called “recognizing functional” of the solution set. As the result, the decision on solvability of the interval linear systems reduces to global maximization of the recognizing functional. Additionally, the specific value of this maximum and its argument provide us with important quantitative information of the solvability supply or its deficiency, which can used for the correction of the interval system in a desired sense.
Ключевые слова: Piecewise linear function; Recognizing functional; Interval system of linear equations; Solvability measure; Solvability Solution set;
Издано: 2016
Физ. характеристика: с.247-260
Цитирование: 1. Beeck, H.: Über die Struktur und Abschätzungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10, 231–244 (1972)CrossRefMATHMathSciNet 2. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)MATH 3. Jansson, C.: Calculation of exact bounds for the solution set of linear interval systems. Linear Algebra Appl. 251, 321–340 (1997)CrossRefMATHMathSciNet 4. Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. Comput. Technol. 15(1), 7–13 (2010)MATH 5. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)CrossRefMATH 6. Lakeyev, A.V., Noskov, S.I.: On the solution set to linear equation with intervally defined operator and right-hand side. Sib. Math. J. 35(5), 1074–1084 (1994). (in Russian) 7. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefMATH 8. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)MATH 9. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970, 1997) 10. Sharaya, I.A., Shary, S.P.: Reserve as recognizing functional for AE-solutions to interval system of linear equations. In: 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2014, Book of Abstracts, Dept. of Computer Science, University of Würzburg, Germany, 21–26 Sept 2014, pp. 145–146. University of Würzburg (2014) 11. Shary, S.P.: A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Comput. 8(5), 321–418 (2002). http://​www.​nsc.​ru/​interval/​shary/​Papers/​ANewTech.​pdf 12. Shary, S.P.: A new method for inner estimation of solution sets to interval linear systems. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties (Mathematical Engineering, vol. 3), pp. 21–42. Springer, Berlin (2011) 13. Shary, S.P.: Solvability of interval linear equations and data analysis under uncertainty. Autom. Remote Control 73(2), 310–322 (2012). doi:10.​1134/​S000511791202009​9 CrossRefMATHMathSciNet 14. Shary, S.P.: Maximum consistency method for data fitting under interval uncertainty. In: Proceedings of 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2014, Book of Abstracts, Department of Computer Science, University of Würzburg, Germany, September 21–26, 2014, pp. 147–148. University of Würzburg (2014) 15. Shary, S.P.: Finite-Dimensional Interval Analysis. XYZ, Novosibirsk (2015). http://​www.​nsc.​ru/​interval/​Library/​InteBooks (in Russian) 16. Shary, S.P., Sharaya, I.A.: Recognizing solvability of interval equations and its application to data analysis. Comput. Technol. 18(3), 80–109 (2013). http://​www.​ict.​nsc.​ru/​jct/​t18n3?​l=​eng (in Russian) 17. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer, Boston (1998)CrossRefMATH 18. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structure. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, In Honor of the 60th Birthday of Panos M. Pardalos, pp. 465–501. Springer, New York (2014). doi:10.​1007/​978-1-4939-0808-0_​23