Инд. авторы: | Деменков А.Г., Черных Г.Г. |
Заглавие: | Математическое моделирование турбулентных следов с варьируемым суммарным избыточным импульсом |
Библ. ссылка: | Деменков А.Г., Черных Г.Г. Математическое моделирование турбулентных следов с варьируемым суммарным избыточным импульсом // Вычислительные технологии. - 2015. - Т.20. - № 4. - С.29-44. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 24339604; |
Реферат: | eng: The turbulent wakes behind towed and self-propelled bodies in homogeneous fluid are an obvious example of jet turbulent flows with a varied value of total excess momentum. The turbulent wakes are also characterized by a considerably varying ratio Ρ/ε, where Ρ is the generation of turbulence energy due to gradients of the averaged motion, and ε is the rate of dissipation of the turbulence energy to heat. In momentumless turbulent wakes even on distances of about ten diameters of the body this ratio is rather small. In drag turbulent wakes behind slender axisymmetric bodies the ratio Ρ/ε is close to unity. In present paper we consider flows in some turbulent wakes with varied total excess momentum. For description of the flow in turbulent wakes we use the system of averaged equations of motion in thin shear viscous layer approach. This system is not closed. Based on non-equilibrium Rodi’s algebraic stress model, the numerical model for turbulent wakes has been constructed. Sufficient universality of the applied algebraic model is caused by the possibility of considering the influence of the parameter Ρ/ε. The results of calculations are in a good agreement with known experimental data. Based on the modified mathematical model which takes into account the substantial variation of the Reynolds turbulent number in the process of turbulent flow decay, the numerical simulation of the final stage degeneration for axisymmetic wakes with zero and small nonzero total excess momentum was carried out. rus: С применением модифицированной e ∼ ε-модели турбулентности выполнено численное моделирование динамики плоских и осесимметричных турбулентных следов с варьируемым суммарным избыточным импульсом в однородной жидко-сти. Результаты расчетов хорошо согласуются с известными экспериментальными данными. Осуществлено численное моделирование асимптотического вырождения осесимметричных турбулентных следов с нулевым и малым ненулевым суммарным избыточным импульсом. |
Ключевые слова: | numerical modelling; plane and axisymmetric turbulent wakes vith varied total excess momentum; асимптотическое вырождение осесимметричных турбулентных следов; численное моделирование; плоские и осесимметричные турбулентные следы с варьиру-емым суммарным избыточным импульсом; asymptotic degeneration of axysimmetric turbulent wakes; |
Издано: | 2015 |
Физ. характеристика: | с.29-44 |
Цитирование: | 1. Naudascher, E. Flow in the wake of a self-propelled bodies and related sources of turbulence. Journal of Fluid Mechanics. 1965; 22(4):625-656. 2. Ginevskii, A.S. Teoriya turbulentnykh struy i sledov [Theory of Turbulent Jets and Wakes]. Moscow: Mashinostroenie; 1969: 300. (In Russ.) 3. Rodi, W. The prediction of free turbulent boundary layers by use of two-equation model of turbulence. Ph.D.Thesis, University of London; 1972: 309. 4. Lewellen, W.S., Teske, M, Donaldson, C. du P. Application of turbulence model equations to axisymmetric wakes. American Institute of Aeronautics and Astronautics Journal. 1974; (12):620-625. 5. Finson, M.L. Similarity behaviour of momentumless turbulent wakes. Journal of Fluid Mechanics. 1975; (71):465-479. 6. Sabelnikov, V.A. Some special features of turbulent flows with zero excess momentum. Uchenye Zapiski TsAGI. 1975; 6(4):71-74. (In Russ.) 7. Townsend, A.A. The structure of turbulent shear flow. Cambridge: Cambridge University Press; 1976: 429. 8. Higuchi, H. Experimental investigation on axisymmetric turbulent wakes with zero momentum defect. Ph.D.Thesis. California: California Institute of Technology; 1977: 213. 9. Gorodtsov, V.A. Similarity and weak closing relations for symmetric free turbulence. Fluid Dynamics. 1979; 14(1):31-37. 10. Hassid, S. Collapse of turbulent wakes in stable stratified media. Journal of Hydronautics. 1980; (14):25-32. 11. Hassid, S. Similarity and decay law of momentumless wakes. Physics of Fluids. 1980; (23):404-405. 12. Luchko, N.N. The influence of the error in determining excess momentum on the evolution of an axisymmetric turbulent wake. Struktura Turbulentnykh Techenii. Nauchnye trudy ITMO AN BSSR. 1982; 35-48. (In Russ.) 13. Kolovandin, B.A., Luchko, N.N. Influence of external turbulence on the velocity field in the wake behind an ellipsoid of revolution. Journal of Engineering Physics. 1985; 48(4):390-396. 14. Kovalev, I.I., Kolovandin, B.A., Luchko, N.N. Final stage in turbulent velocity field degeneration in a coflow. Journal of Engineering Physics. 1985; 49(2):903-906. 15. Aleksenko, N.V., Kostomakha, V.A. Experimental study of an axisymmetric nonimpulsive turbulent jet. Journal of Applied Mechanics and Technical Physics. 1987; 28(1):60-64. 16. Dmitrenko, Y.M., Kovalev, I.I., Luchko, N.N., Cherepanov, P.Y. Plane turbulent wake with zero excess momentum. Journal of Engineering Physics. 1987; 52(5):536-542. 17. Aleksenko, N.V., Kostomakha, V.A. Experimental ivestigation of the dynamics of a momentumless turbulent wake in a turbulent external flow. Dinamika sploshnoy sredy. 1988; (81):14-24. (In Russ.) 18. Higuchi, H., Kubota, T. Axisymmetric wakes behind a slender body including zeromomentum configurations. Physics of Fluids A. 1990; 2(9):1615-1623. 19. Cimbala J.M., Park W.J. An experimental investigation of the turbulent structure in a two-dimensional momentumless wake. Journal of Fluid Mech. 1990; (213):479-509. 20. Chernykh, G.G., Demenkov, A.G., Fedorova, N.N. Numerical models of a plane and axisymmetric turbulent wakes in homogeneous fluid. International Conference on the Methods of Aerophysical Research, Novosibirsk, aug. 22-26, 1994. Novosibirsk; 1994(2):76-81. 21. Fedorova, N.N., Chernykh, G.G. Numerical simulation of plane turbulent wakes. Matematicheskoe Modelirovanie. 1994; 6(10):24-34. (In Russ.) 22. Ahn, J.W., Sung, H.J. Prediction of two-dimensional momentumless wake by k - ε - γ model. American Institute of Aeronautics and Astronautics Journal. 1995; 33(4):611-617. 23. Bukreev, V.I., Demenkov, A.G., Kostomakha, V.A., Chernykh, G.G. Heat propagation from a line source in a plane turbulent wake. Journal of Applied Mechanics and Technical Physics. 1996; 37(5):710-719. 24. Chernykh, G.G., Demenkov, A.G. On numerical simulation of jet flows of viscous incompressible fluids. Russian Journal of Numerical Analysis and Mathematical Modelling. 1997; 12(2):111-125. 25. Cherepanov, P.Y., Babenko, V.A. Experimental and numerical study of flat momentumless wake. International Journal of Heat and Fluid Flow. 1998; (19):608-622. 26. Grebenev, V.N., Demenkov, A.G., Chernykh, G.G. Analysis of the local-equilibrium approximation in the problem of far planar turbulent wake. Doklady Physics. 2002; 47(6):518-521. 27. Voropaeva, O.F. Dynamics of a far momentumless turbulent wake in passively stratified media. Russian Journal of Numerical Analysis and Mathematical Modelling. 2004; 19(1):83-102. 28. Lu, M.-H., Sirviente, A.I. Numerical study of the momentumless wake of an axisymmetric body. 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January 2005, Reno. Nevada: American Institute of Aeronautics and Astronautics; 2005: 14. 29. Voropaeva, O.F. A hierarchy of second- and third-order turbulence models for momentumless wakes behind an axisymmetric bodies. Matematicheskoe Modelirovanie. 2007; 19(3):29-51. (In Russ.) 30. Kaptsov, O.V., Efremov, I.A., Schmidt, A.V. Self-similar solutions of the second-order model of the far turbulent wake. Journal of Applied Mechanics and Technical Physics. 2008; 49(2): 217-221. 31. Novikov, B.G. Effect of small total pulse on development of a wake behind the self-propelled bodies. Thermophysics and Aeromechanics. 2009; 16(4):597-623. (In Russ.) 32. Chernykh, G.G., Moshkin, N.P., Fomina, A.V. Dynamics of turbulent wake with small excess momentum in stratified media. Communications in Nonlinear Sciences and Numerical Simulation. 2009; 14(4):1307-1323. 33. Efremov, I.A., Kaptsov, O.V., Chernykh, G.G. Self-similar solutions for two problems of free turbulence. Matematicheskoe Modelirovanie. 2009; 21(12):137-144. (In Russ.) 34. Maderich, V., Konstantinov, S. Asymptotic and numerical analysis of momentumless turbulent wakes. Fluid Dynamics Research. 2010; 42(4):1-25. DOI: 10.1088/0169-5983/42/4/045503. 35. De Stadler, M.B., Sarkar, S. Simulation of a propelled wake with moderate excess momentum in a stratified fluid. Journal of Fluid Mechanics. 2012; (692):28-52. 36. Kaptsov, O.V., Fomina, A.V., Chernykh, G.G., Schmidt, A.V. Self-similar decay of the momentumless turbulent wake in a passive stratified medium. Journal of Applied Mechanics and Technical Physics. 2012; 53(5):672-678. 37. Lewis, B.J., Cimbala, J.M., Wouden, A.M. Analysis and optimization of guide vane jets to decrease the unsteady load on mixed flow hydroturbine runner blades. Proceedings of Seventh International Conference on Computational Fluid Dynamics , Big Island, Hawaii, 2012, July 9-13. 2012: 14. ICCFD7-1701. 38. Chernykh, G.G., Demenkov, A.G. Numerical Simulation of Turbulent Wakes with Variable Total Excess Momentum. Journal of Engineering Thermophysics. 2013; 22(2):143-156. 39. Kaptsov, O.V., Fomina, A.V., Chernykh, G.G., Schmidt, A.V. Self-similar decay of the momentumless turbulent wake in a passive stratified medium. Matematicheskoe Modelirovanie. 2015; 27(1):84-98. (In Russ.) 40. Sennitskii, V.L. Example of flow of an axisymmetric liquid stream over a self-propelled body. Journal of Applied Mechanics and Technical Physics. 1984; 25(4):526-530. 41. Pukhnachev, V.V. Asymptotics of a velocity field at considerable distances from a selfpropelled body. Journal of Applied Mechanics and Technical Physics. 1989; 30(2):215-222. |