Инд. авторы: Shary S.P.
Заглавие: On full-rank interval matrices
Библ. ссылка: Shary S.P. On full-rank interval matrices // Numerical Analysis and Applications. - 2014. - Vol.7. - Iss. 3. - P.241-254. - ISSN 1995-4239. - EISSN 1995-4247.
Внешние системы: DOI: 10.1134/S1995423914030069; РИНЦ: 23990271; SCOPUS: 2-s2.0-84907351073;
Реферат: eng: For interval matrices, the paper considers the problem of determining whether a matrix has full rank. We propose a full-rank criterion that relies on the search for diagonal dominance as well as criteria based on pseudoinversion of the midpoint matrix and comparison of the midpoint and the radius matrices for the interval matrix under study. © 2014 Pleiades Publishing, Ltd.
Ключевые слова: Interval matrix; full-rank criteria; full rank;
Издано: 2014
Физ. характеристика: с.241-254
Цитирование: 1. Voevodin, V. V. and Voevodin, Vl. V., Entsiklopediya lineiinoii algebry. Elektronnaya sistema LINEAL (Encyclopedia of Linear Algebra. LINEAL Electronic System), St. Petersburg: BKhV, 2006. 2. Voevodin, V. V. and Kuznetsov, Yu. A., Matritsy i vychisleniya (Matrices and Computations), Moscow: Nauka, 1984. 3. Gantmacher, F. R., Theory of Matrices, AMS Chelsea Publ., 1959. 4. Golub, G. H. and van Loan, Ch. F., Matrix Computations, Baltimore: The Johns Hopkins Univ. Press, 1983. 5. Demmel, J. W., Applied Numerical Linear Algebra, Soc. for Industrial and Applied Mathematics, 1997. 6. Dieudonne, J., Foundations of Modern Analysis, Academic Press, 1960. 7. Erokhin, V. I., Optimal Matrix Correction and Regularization of Incompatible Linear Models, Diskr. Anal. Issled. Oper., 2002, vol. 9, no. 2, pp. 41-77. 8. Erokhin, V. I., Necessary and Sufficient Conditions of Nonsingularity of Interval Matrices, in Proc. Int. Conf. on Computational Mathematics MKVM-2004, Shokin, Yu. I. et al., Eds., Inst. Comp. Math. Math. Geophys. SB RAS, Novosibirsk, 2004, pp. 193-200. 9. Kalmykov, S. A., Shokin, Yu. I., and Yuldashev, Z. Kh., Metody interval'nogo analiza (Methods of Interval Analysis) Novosibirsk: Nauka, 1986. 10. Lancaster, P. and Tismenetsky, M., The Theory of Matrices, New York: Academic Press, 1985. 11. Rodionova, O. E., Interval Method of Processing Results of Multichannel Experiments, Doctoral (Phys.-Math.) Dissertation, Inst. Phys. Chemistry RAS, 2008. 12. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., and Zimmermann, K., Linear Optimization Problems with Inexact Data, New York: Springer Science + Business Media, 2006. 13. Horn, R. and Johnson, Ch. R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. 14. Shary, S. P., Konechnomernyi interval'nyi analiz (Finite-Dimensional Interval Analysis), Inst. Comp. Technol. SB RAS, Novosibirsk, 2013; URL: http://www. nsc. ru/interval/Library/InteBooks/SharyBook. pdf. 15. Shary, S. P., Solvability of Interval Linear Equations and Data Analysis under Uncertainty, Avtomatika Telemekh., 2012, no. 2, pp. 111-125. 16. Berman, A. and Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, New York: Academic Press, 1979. 17. Naimark, L. and Zeheb, E., An Extension of Levy-Desplanque Theorem and Some Stability Conditions for Matrices with Uncertain Entries, IEEE Trans. Circuits Syst. I: Fund. Th. Appl., 1997, vol. 44, no. 2, pp. 167-170. 18. Nemirovski, A., Several NP-Hard Problems Arising in Robust Stability, Math. Control Signals Syst., 1993. vol. 6, no. 2, pp. 99-105. 19. Neumaier, A., Interval Methods for Systems of Equations, Cambridge: Cambridge Univ. Press, 1990. 20. Poljak, S. and Rohn, J., Checking Robust Nonsingularity is NP-Hard, Math. Control Signals Syst., 1993. vol. 6, no. 1, pp. 1-9. 21. Rex, G. and Rohn, J., Sufficient Conditions for Regularity and Singularity of Interval Matrices, SIAM J. Matrix Anal. Appl., 1999, vol. 20, no. 2, pp. 437-445. 22. Rohn, J., Enclosing Solutions of Overdetermined Systems of Linear Interval Equations, Rel. Comput., 1996. vol. 2, no. 2, pp. 167-171. 23. Rohn, J., A Handbook of Results on Interval Linear Problems, Prague: Institute of Computer Science, Academy of Sciences of the Czech Republic, 2012; URL: http://www. nsc. ru/interval/Library/InteBooks/!handbook. pdf. 24. Rump, S. M., Verification Methods for Dense and Sparse Systems of Equations, in Topics in Validated Numerics, Amsterdam: Elsevier, 1994, pp. 63-135. 25. Scilab: The Free Platform for Numerical Computation; URL: http://www. scilab. org.