Инд. авторы: Harper Katie L., Nazarenko Sergey V., Medvedev Sergey B., Connaughton Colm
Заглавие: Wave turbulence in the two-layer ocean model
Библ. ссылка: Harper Katie L., Nazarenko Sergey V., Medvedev Sergey B., Connaughton Colm Wave turbulence in the two-layer ocean model // Journal of Fluid Mechanics. - 2014. - Vol.756. - P.309-327. - ISSN 0022-1120. - EISSN 1469-7645.
Внешние системы: DOI: 10.1017/jfm.2014.465; РИНЦ: 23987485; SCOPUS: 2-s2.0-84906871676; WoS: 000341130000014;
Реферат: eng: This paper looks at the two-layer ocean model from a wave-turbulence (WT) perspective. A symmetric form of the two-layer kinetic equation for Rossby waves is derived using canonical variables, allowing the turbulent cascade of energy between the barotropic and baroclinic modes to be studied. It is already well known that in two-layers, energy is transferred via triad interactions from the large-scale baroclinic modes to the baroclinic and barotropic modes at the Rossby deformation scale, where barotropization takes place, and from there to the large-scale barotropic modes via an inverse transfer. However, by applying WT theory, we find that energy is transferred via dominant {+ - -} triads with one barotropic component and two baroclinic components, and that the direct transfer of energy is local and the inverse energy transfer is non-local. We study this non-locality using scale separation and obtain a system of coupled equations for the small-scale baroclinic component and the large-scale barotropic component. Since the total energy of the small-scale component is not conserved, but the total barotropic plus baroclinic energy is conserved, the baroclinic energy loss at small scales will be compensated by the growth of the barotropic energy at large scales. Using the frequency resonance condition, we show that in the presence of the beta-effect this transfer is mostly anisotropic and mostly to the zonal component.
Ключевые слова: JETS; SCALES; INSTABILITY; EQUILIBRATION; FLOWS; MIDOCEAN EDDIES; GEOSTROPHIC TURBULENCE; wave-turbulence interactions; quasi-geostrophic flows; BETA-PLANE;
Издано: 2014
Физ. характеристика: с.309-327
Цитирование: 1. BALK, A. & NAZARENKO, S. 1990 Physical realizability of anisotropic weak-turbulence Kolmogorov spectra. Sov. Phys. JETP 70, 1031-1041. 2. BALK, A., NAZARENKO, S. & ZAKHAROV, V. 1990 On the non-local turbulence of drift type waves. Phys. Lett. A 146, 217-221. 3. BALK, A., NAZARENKO, S. & ZAKHAROV, V. 1991 A new invariant for drift turbulence. Phys. Lett. A 152, 276-280. 4. BARTELLO, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratifed turbulence. J. Atmos. Sci. 52, 4410-4428. 5. BEDARD, R., LUKASCHUK, S. & NAZARENKO, S. 2013 Non-stationary regimes of surface gravity wave turbulence. J. Expl Theor. Phys. Lett. 97, 529-535. 6. CHARNEY, J. 1948 On the scale of atmospheric motions. Geofys. Publ. Oslo 17, 1-17. 7. CHARNEY, J. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 1087-1094. 8. CONNAUGHTON, C., NAZARENKO, S. & QUINN, B. 2010 Non-local wave turbulence in the Charney-Hasegawa-Mima equation: a short review. arXiv:1012.2714. 9. CONNAUGHTON, C., NAZARENKO, S. & QUINN, B. 2011 Feedback of zonal flows on wave turbulence driven by small-scale instability in the Charney-Hasegawa-Mima model. Europhys. Lett. 96, 25001. 10. FJøRTOFT, R. 1953 On the changes in the spectral distribution of kinetic energy for two-dimensional non-divergent flow. Tellus 5, 225-230. 11. GALPERIN, B., SUKORIANSKY, S., DIKOVSKAYA, N., READ, P., YAMAZAKI, Y. & WORDSWORTH, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a beta-effect. Nonlinear Process. Geophys. 13, 83-98. 12. HERBERT, C. 2014 Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows. Phys. Rev. E 89, 033008. 13. JANSSEN, P. 2008 Progress in ocean wave forecasting. J. Comput. Phys. 227, 3572-3594. 14. KOZLOV, O., REZNIK, G. & SOOMERE, T. 1987 Kinetic equation for Rossby waves in two-layer ocean. Izv. Akad. Nauk SSSR Ser. Fiz. Atmosfer. i Okeana 23, 1165-1173. 15. KRAICHNAN, R. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417-1423. 16. L'VOV, V., NAZARENKO, S. & SKRBEK, L. 2006 Energy spectra of developed turbulence in helium superfluids. J. Low Temp. Phys. 145, 125-142. 17. MCWILLIAMS, J. 2006 Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press. 18. NAZARENKO, S. 2011 Wave Turbulence, Lecture Notes in Physics, vol. 825. Springer. 19. NAZARENKO, S., KEVLAHAN, N. & DUBRULLE, B. 1999 A WKB theory for rapid distortion of inhomogeneous turbulence. J. Fluid Mech. 390, 325-348. 20. NAZARENKO, S., KEVLAHAN, N. & DUBRULLE, B. 2000 Nonlinear RDT theory of near-wall turbulence. Physica D 139, 158-176. 21. NAZARENKO, S. & QUINN, B. 2009 Triple cascade behaviour in QG and drift turbulence and the generation of zonal jets. Phys. Rev. Lett. 103, 118501. 22. PHILLIPS, N. 1951 A simple three-dimensional model for the study of large-scale extra-tropical flow patterns. J. Meteorol. 8, 381-394. 23. RHINES, P. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417-443. 24. RHINES, P. 2007 The dynamics of unsteady currents. In The Sea, vol. VI (ed. E. D. Goldberg), pp. 189-318. John Wiley and Sons, Inc. 25. RHINES, P. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11, 401-441. 26. SALMON, R. 1978 Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn. 10, 25-52. 27. SALMON, R. 1980 Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15, 167-211. 28. SALMON, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press. 29. SMITH, K. & VALLIS, G. 2001 Scales and equilibration of mid-ocean eddies. Freely decaying flow. J. Phys. Oceanogr. 31, 554-571. 30. SMITH, K. & VALLIS, G. 2002 The scales and equilibration of midocean eddies: forced-dissipative flow. J. Phys. Oceanogr. 32, 1699-1721. 31. TRONKO, N., NAZARENKO, S. & GALTIER, S. 2013 Weak turbulence in two-dimensional magnetohydrodynamics. Phys. Rev. E 87, 033103. 32. VALLIS, G. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press. 33. VALLIS, G. & MALTRUD, M. E. 1993 Generation of mean flows and jets on a beta-plane and over topography. J. Phys. Oceanogr. 23, 1346-1362. 34. VENAILLE, A., VALLIS, G. & GRIFFIES, S. 2012 The catalytic role of beta effect in barotropization processes. J. Fluid Mech. 709, 490-515. 35. ZAKHAROV, V. & FILONENKO, N. 1967 Energy spectrum for stochastic oscillations of the surface of a liquid. Sov. Phys. Dokl. 11, 881-884. 36. ZAKHAROV, V., L'VOV, V. & FALKOVICH, G. 1992 Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer.