Цитирование: | 1. Akhmediev, N. & Ankiewicz, A. (eds). Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).
2. Grelu, Ph. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84-92 (2012).
3. Renninger, W. H. & Wise, F. W. In Fiber Lasers. (ed. Okhotnikov, O. G.) (Wiley, 2012).
4. Renninger, W. H., Chong, A. & Wise, F. Disspative solitons in normaldispersion fiber lasers. Phys. Rev. A 77, 023814-023814 (2008).
5. Soto-Crespo, J. M., Akhmediev, N. N., Afanasjev, V. V. & Wabnitz, S. Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783-4796 (1997). (Pubitemid 127612831)
6. Akhmediev, N., Soto-Crespo, J. M. & Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach. Phys. Rev. E 63, 056602 (2001).
7. Grelu, P. & Akhmediev, N. Group interactions of dissipative solitons in a laser cavity: The case of 2+1. Opt. Express 12, 3184-3189 (2004).
8. Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005).
9. Kharenko, D. S., Podivilov, E. V., Apolonski, A. A. & Babin, S. A. 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt. Lett. 37, 4104-4106 (2012).
10. Aguergaray, C., Runge, A., Erkintalo, M. & Broderick, N. G. R Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. Opt. Lett. 38, 2644-2646 (2013).
11. Bednyakova, A. E. et al. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express 21, 20556-20564 (2013).
12. Naumov, S. et al. Approaching the microjoule frontier with femtosecond laser oscillators. N. J. Phys. 7, 216 (2005).
13. Kalashnikov, V. L. & Apolonski, A. Chirped-pulse oscillators: a unified standpoint. Phys. Rev. A 79, 043829 (2009).
14. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135-1184 (2006). (Pubitemid 44521770)
15. Schibli, T. R. et al. Optical frequency comb with submilihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355-359 (2008).
16. Kumar, S. & Hasegawa, A. Suppression of the Gordon-Haus noise by a modulated Raman pump. Opt. Lett. 20, 1856-1858 (1995).
17. Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1-18 (2003).
18. Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608-612 (2013).
19. Agrawal, G. P. Nonlinear Fiber Optics (Oxford, 2007).
20. Akhmanov, S. A., Vysloukh, V. A. & Chirkin, A. S. Optics of Femtosecond Laser Pulses (AIP Publishing, 1992).
21. Hollenbeck, D. & Cantrell, C. D. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B 19, 2886-2892 (2002).
22. Komarov, A., Leblond, H. & Sanchez, F. Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A 71, 053809 (2005).
23. Tang, D. Y., Zhao, L. M. & Zhao, B. Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction. Appl. Phys. B Lasers Optics 80, 239-242 (2005). (Pubitemid 40136010)
24. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657-663 (2013).
25. Zhao, L. M., Bartnik, A. C., Tai, Q. Q. & Wise, F. W. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. Opt. Lett. 38, 1942-1944 (2013).
26. Oktem, B., Ülgüdür, C. & Ilday, F. Ö. Soliton-similariton fibre laser. Nat. Photon. 4, 307-311 (2010).
27. Sorokin, E. et al. Intra- and extra-cavity spectral broadening and continuum generation at 1.5 mm using compact low energy femtosecond Cr:YAG laser. Appl. Phys. B 77, 197-204 (2003).
28. Sander, M. Y., Ippen, E. P. & Kärtner, F. X. Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti: sapphire lasers. Opt. Express 18, 4948-4960 (2010).
29. Cox, J. A., Putnam, W. P., Sell, A., Leitenstorfer, A. & Kärtner, F. X. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37, 3579-3581 (2012).
30. Wirth, A. et al. Synthesized light transients. Science 334, 195-200 (2011).
|