Инд. авторы: Babin Sergey A., Podivilov Evgeniy V., Kharenko Denis S., Bednyakova Anastasia E., Fedoruk Mikhail P., Kalashnikov Vladimir L., Apolonski Alexander
Заглавие: Multicolour nonlinearly bound chirped dissipative solitons
Библ. ссылка: Babin Sergey A., Podivilov Evgeniy V., Kharenko Denis S., Bednyakova Anastasia E., Fedoruk Mikhail P., Kalashnikov Vladimir L., Apolonski Alexander Multicolour nonlinearly bound chirped dissipative solitons // Nature Communications. - 2014. - Vol.5. - Art.4653. - ISSN 2041-1723.
Внешние системы: DOI: 10.1038/ncomms5653; РИНЦ: 23990224; PubMed: 25116003; SCOPUS: 2-s2.0-84907340019; WoS: 000341057500007;
Реферат: eng: The dissipative soliton regime is one of the most advanced ways to generate high-energy femtosecond pulses in mode-locked lasers. On the other hand, the stimulated Raman scattering in a fibre laser may convert the excess energy out of the coherent dissipative soliton to a noisy Raman pulse, thus limiting its energy. Here we demonstrate that intracavity feedback provided by re-injection of a Raman pulse into the laser cavity leads to formation of a coherent Raman dissipative soliton. Together, a dissipative soliton and a Raman dissipative soliton (of the first and second orders) form a two (three)-colour stable complex with higher total energy and broader spectrum than those of the dissipative soliton alone. Numerous applications can benefit from this approach, including frequency comb spectroscopy, transmission lines, seeding femtosecond parametric amplifiers, enhancement cavities and multiphoton fluorescence microscopy.
Ключевые слова: DISPERSION; OSCILLATOR; CAVITY; FIBER LASER; MODE-LOCKED LASERS; GENERATION;
Издано: 2014
Физ. характеристика: 4653
Цитирование: 1. Akhmediev, N. & Ankiewicz, A. (eds). Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008). 2. Grelu, Ph. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84-92 (2012). 3. Renninger, W. H. & Wise, F. W. In Fiber Lasers. (ed. Okhotnikov, O. G.) (Wiley, 2012). 4. Renninger, W. H., Chong, A. & Wise, F. Disspative solitons in normaldispersion fiber lasers. Phys. Rev. A 77, 023814-023814 (2008). 5. Soto-Crespo, J. M., Akhmediev, N. N., Afanasjev, V. V. & Wabnitz, S. Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783-4796 (1997). (Pubitemid 127612831) 6. Akhmediev, N., Soto-Crespo, J. M. & Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach. Phys. Rev. E 63, 056602 (2001). 7. Grelu, P. & Akhmediev, N. Group interactions of dissipative solitons in a laser cavity: The case of 2+1. Opt. Express 12, 3184-3189 (2004). 8. Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005). 9. Kharenko, D. S., Podivilov, E. V., Apolonski, A. A. & Babin, S. A. 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt. Lett. 37, 4104-4106 (2012). 10. Aguergaray, C., Runge, A., Erkintalo, M. & Broderick, N. G. R Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. Opt. Lett. 38, 2644-2646 (2013). 11. Bednyakova, A. E. et al. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express 21, 20556-20564 (2013). 12. Naumov, S. et al. Approaching the microjoule frontier with femtosecond laser oscillators. N. J. Phys. 7, 216 (2005). 13. Kalashnikov, V. L. & Apolonski, A. Chirped-pulse oscillators: a unified standpoint. Phys. Rev. A 79, 043829 (2009). 14. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135-1184 (2006). (Pubitemid 44521770) 15. Schibli, T. R. et al. Optical frequency comb with submilihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355-359 (2008). 16. Kumar, S. & Hasegawa, A. Suppression of the Gordon-Haus noise by a modulated Raman pump. Opt. Lett. 20, 1856-1858 (1995). 17. Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1-18 (2003). 18. Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608-612 (2013). 19. Agrawal, G. P. Nonlinear Fiber Optics (Oxford, 2007). 20. Akhmanov, S. A., Vysloukh, V. A. & Chirkin, A. S. Optics of Femtosecond Laser Pulses (AIP Publishing, 1992). 21. Hollenbeck, D. & Cantrell, C. D. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B 19, 2886-2892 (2002). 22. Komarov, A., Leblond, H. & Sanchez, F. Multistability and hysteresis phenomena in passively mode-locked fiber lasers. Phys. Rev. A 71, 053809 (2005). 23. Tang, D. Y., Zhao, L. M. & Zhao, B. Multipulse bound solitons with fixed pulse separations formed by direct soliton interaction. Appl. Phys. B Lasers Optics 80, 239-242 (2005). (Pubitemid 40136010) 24. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657-663 (2013). 25. Zhao, L. M., Bartnik, A. C., Tai, Q. Q. & Wise, F. W. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. Opt. Lett. 38, 1942-1944 (2013). 26. Oktem, B., Ülgüdür, C. & Ilday, F. Ö. Soliton-similariton fibre laser. Nat. Photon. 4, 307-311 (2010). 27. Sorokin, E. et al. Intra- and extra-cavity spectral broadening and continuum generation at 1.5 mm using compact low energy femtosecond Cr:YAG laser. Appl. Phys. B 77, 197-204 (2003). 28. Sander, M. Y., Ippen, E. P. & Kärtner, F. X. Carrier-envelope phase dynamics of octave-spanning dispersion-managed Ti: sapphire lasers. Opt. Express 18, 4948-4960 (2010). 29. Cox, J. A., Putnam, W. P., Sell, A., Leitenstorfer, A. & Kärtner, F. X. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Opt. Lett. 37, 3579-3581 (2012). 30. Wirth, A. et al. Synthesized light transients. Science 334, 195-200 (2011).