Инд. авторы: Rubenchik Alexander M., Fedoruk Michail P, Turitsyn Sergei K.
Заглавие: The effect of self-focusing on laser space-debris cleaning
Библ. ссылка: Rubenchik Alexander M., Fedoruk Michail P, Turitsyn Sergei K. The effect of self-focusing on laser space-debris cleaning // Light: Science and Applications. - 2014. - Vol.3. - Art.e159. - ISSN 2095-5545. - EISSN 2047-7538.
Внешние системы: DOI: 10.1038/lsa.2014.40; РИНЦ: 24031129; SCOPUS: 2-s2.0-84922006493; WoS: 000336902100002;
Реферат: eng: A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed.
Ключевые слова: space debris; self-focusing; laser;
Издано: 2014
Цитирование: 1. Bekey I. Project Orion: orbital debris removal using ground-based sensors and lasers. In: Campbell J, editor. NASA Marshall Spaceflight Center Technical Memorandum. Huntsville, AL: NASA Marshall Spaceflight Center; 1996. p108522. 2. Phipps CR, Baker KL, Libby SB, Liedahl DA, Olivier SA et al. Removing orbital debris with lasers. Adv Space Res 2012;49:1283-1300. 3. Haynam CA, Wegner PJ, Auerbach JM, Bowers MW, Dixit SN et al. National ignition facility laser performance status. Appl Opt 2007;46:3276-3303. 4. Rubenchik A, Erlandson AC, Liedahl D. Laser system for space debris cleaning. AIP Conf Proc 2012;1278:347-353. 5. Phipps CR, Turner TP, Harrison RF, York GW, Osborne WZ et al. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers. J Appl Phys 1988;64:1083-1096. 6. Rubenchik AM, Fedoruk MP, Turitsyn SK. Laser beam self-focusing in the atmosphere. Phys Rev Lett 2009;102:233902. 7. Vlasov SN, Petrishev VA, Talanov VI. Average description of wave beams in linear and nonlinear media. Radiophys Quantum Electron 1974;14:1062-1070. 8. Shen Y. Principles of Nonlinear Optics. New York: Wiley Interscience; 1984. 9. Siegman A. Lasers. Mill Valley, CA: University Science Books; 1986. 10. Zakharov VE, Rubenchik AM. Instability of waveguides and solitons in nonlinear media. Sov Phys JETP 2012;38:494-500. 11. Rubenchik AM, Turitsyn SK, Fedoruk MP. Modulation instability in high power laser amplifiers. Opt Express 2010;18:1380-1388. 12. Strohbehn J (ed). Laser Beam Propagation in the Atmosphere. Berlin: Springer; 1978. 13. Henesian MA, Swift CD, Murray JR. Stimulated rotational Raman scattering in nitrogen in long air paths. Opt Lett 1985;10:565-567. 14. Ori A, Nathanson B, Rokni M. The threshold for transient stimulated rotational Raman scattering in the atmosphere. J Phys D Appl Phys 1990;23:142-149.