Инд. авторы: Bulgakova Nadezhda M., Panchenko Alexei N., Zhukov Vladimir P., Kudryashov Sergey I., Pereira Antonio, Marine Wladimir, Mocek Tomas, Bulgakov Alexander V.
Заглавие: Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces
Библ. ссылка: Bulgakova Nadezhda M., Panchenko Alexei N., Zhukov Vladimir P., Kudryashov Sergey I., Pereira Antonio, Marine Wladimir, Mocek Tomas, Bulgakov Alexander V. Impacts of Ambient and Ablation Plasmas on Short- and Ultrashort-Pulse Laser Processing of Surfaces // Micromachines. - 2014. - Vol.5. - Iss. 4. - P.1344-1372. - ISSN 2072-666X.
Внешние системы: DOI: 10.3390/mi5041344; РИНЦ: 24022018; SCOPUS: 2-s2.0-84919712866; WoS: 000346796400033;
Реферат: eng: In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a "plasma pipe"; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.
eng: In spite of the fact that more than five decades have passed since the invention of laser, some topics of laser-matter interaction still remain incompletely studied. One of such topics is plasma impact on the overall phenomenon of the interaction and its particular features, including influence of the laser-excited plasma re-radiation, back flux of energetic plasma species, and massive material redeposition, on the surface quality and processing efficiency. In this paper, we analyze different plasma aspects, which go beyond a simple consideration of the well-known effect of plasma shielding of laser radiation. The following effects are considered: ambient gas ionization above the target on material processing with formation of a "plasma pipe"; back heating of the target by both laser-driven ambient and ablation plasmas through conductive and radiative heat transfer; plasma chemical effects on surface processing including microstructure growth on liquid metals; complicated dynamics of the ablation plasma flow interacting with an ambient gas that can result in substantial redeposition of material around the ablation spot. Together with a review summarizing our main to-date achievements and outlining research directions, we present new results underlining importance of laser plasma dynamics and photoionization of the gas environment upon laser processing of materials.
Ключевые слова: DEPOSITION; PROPAGATION; SILICON; DYNAMICS; METALS; FEMTOSECOND; GA TARGET; THERMAL-MODEL; DETONATION-WAVES; PHASE-EXPLOSION; microstructures on liquid metals; plasma pipe formation; material redeposition; ambient gas breakdown; laser plasma; laser material processing; pulsed laser ablation;
Издано: 2014
Физ. характеристика: с.1344-1372
Цитирование: 1. Ion, J.C. Laser Processing of Engineering Materials: Principles, Procedure, and Application; Elsevier: Amsterdam, The Netherlands, 2005. 2. Steen, W.M.; Mazumder, J. Laser Material Processing, 4th ed.; Springer: Berlin, Germany, 2010. 3. Kannatey-Asibu, E. Principles of Laser Materials Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. 4. Bäuerle, D.W. Laser Processing and Chemistry, 4th ed.; Springer: Berlin, Germany, 2011. 5. Boulmer-Leborgne, C.; Hermann, J.; Dubreuil, B. Plasma formation resulting from the interaction of a laser beam with a solid metal target in an ambient gas. Plasma Sources Sci. Technol. 1993, 2, 219-226. 6. Bulgakov, A.V.; Bulgakova, N.M. Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma. Quantum Electron. 1999, 29, 433-437. 7. Stafe, M.; Marcu, A.; Puscas, N.N. Pulsed Laser Ablation of Solids: Basics, Theory and Applications; Springer Series in Surface Sciences; Springer: Berlin, Germany, 2014; pp. 77-141. 8. Pirri, A.N.; Root, R.G.; Wu, P.K.S. Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAA J. 1978, 16, 1296-1304. 9. Prokhorov, A.M.; Konov, V.I.; Ursu, I.; Mihailescu, I.N. Laser Heating of Metals; Taylor & Francis: Abingdon, UK, 1990. 10. Maher, W.E.; Hall, R.B.; Johnson, R.R. Experimental study of ignition and propagation of laser-supported detonation waves. J. Appl. Phys. 1974, 45, 2138-2145. 11. Radziemski, L.J.; Cremers, D.A. Laser-Induced Plasmas and Applications; Marcel Dekker: New York, NY, USA, 1989. 12. Budnik, A.P.; Popov, A.G. Liquid droplet supercritical explosion in the field of CO2 laser radiation and influence of plasma chemical reactions on initiation of optical breakdown in air. Proc. SPIE 1990, 1440, 135-145. 13. Ushio, M.; Komurasaki, K.; Kawamura, K.; Arakawa, Y. Effect of laser supported detonation wave confinement on termination conditions. Shock Waves 2008, 18, 35-39. 14. Panchenko, A.N.; Shulepov, M.A.; Tel'minov, A.E.; Zakharov, L.A.; Paletsky, A.A.; Bulgakova, N.M. Pulsed IR laser ablation of organic polymers in air: Shielding effects and plasma pipe formation. J. Phys. D Appl. Phys. 2011, 44, 385201. 15. Farid, N.; Harilal, S.S.; Ding, H.; Hassanein, A. Dynamics of ultrafast laser plasma expansion in the presence of an ambient. Appl. Phys. Lett. 2013, 103, 191112. 16. Pirogov, S.Y.; Belyanin, D.G.; Yur'ev, A.S.; Tipaev, V.V.; Filatov, A.V. Numerical investigation of the propagation of light-induced detonation waves during the absorption of high-power laser radiation in air at elevated density. Tech. Phys. Lett. 2010, 23, 1095-1098. 17. Vorobyev, A.Y.; Guo, C. Enhanced energy coupling in femtosecond laser-metal interactions at high intensities. Opt. Exp. 2006, 14, 13113-13119. 18. Bulgakova, N.M.; Zhukov, V.P.; Vorobyev, A.Y.; Guo, C. Modeling of residual thermal effect in femtosecond laser ablation of metals: role of a gas environment. Appl. Phys. A 2008, 92, 883-889. 19. Bulgakova, N.M.; Bulgakov, A.V.; Zhukov, V.P.; Marine, W.; Vorobyev, A.Y.; Guo, C. Charging and plasma effects under ultrashort pulsed laser ablation. Proc. SPIE 2008, 7005, 70050C. 20. Keldysh, L.V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 1965, 20, 1307-1314. 21. Lovetsky, E.E.; Polyanichev, A.N.; Fetisov, V.S. Recombination and acceleration of laser plasma ions. Sov. J. Plasma Phys. 1975, 1, 422-431. 22. Bulgakov, A.V.; Bulgakova, N.M. Dynamics of laser-induced plume expansion into an ambient gas during film deposition. J. Phys. D 1995, 28, 1710-1718. 23. Zeldovich, Ya.; Raizer, Yu. P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena; Dover Publications: Mineola, NY, USA, 1996. 24. Ireland, C.L.M.; Grey Morgan, C. Gas breakdown by a short laser pulse. J. Phys. D Appl. Phys. 1973, 6, 720-729. 25. Steinfeld, J.I.; Houston, P.L. Coherence Laser Spectroscopy, Plenum: New York, NY, USA, 1978. 26. Martirosyan, A.E.; Altucci, C.; Bruno, A.; de Licio, C.; Porzio, A.; Solimeno, S. Time evolution of plasma afterglow produced by femtosecond laser pulses. J. Appl. Phys. 2004, 96, 5450-5455. 27. Zhukov, V.P.; Bulgakova, N.M. Role of ambient gas in heating of metal samples by femtosecond pulses of laser radiation. Thermophys. Aeromech. 2009, 16, 165-176. 28. Zeng, X.; Mao, X.L.; Grief, R.; Russo, R.E. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A 2005, 80, 237-241. 29. McDonald, J.P.; Ma, S.; Pollock, T.M.; Yalisove, S.M.; Nees, J.A. Femtosecond pulsed laser ablation dynamics and ablation morphology of nickel based superalloy CMSX-4. J. Appl. Phys. 2008, 103, 093111. 30. Lichtenwalner, D.J.; Auciello, O.; Dat, R.; Kingon, A.I. Investigation of the ablated flux characteristics during pulsed-laser ablation deposition of multicomponent oxides. J. Appl. Phys. 1993, 74, 7497-7505. 31. Bulgakova, N.M.; Bulgakov, A.V. Gas-dynamic effects of the interaction between a pulsed laser ablation plume and the ambient gas: Analogy with an underexpanded jet. J. Phys. D 1998, 31, 693-703. 32. Diwakar, P.K.; Harilal, S.S.; Hassanein, A.; Phillips, M.C. Expansion dynamics of ultrashort laser produced plasmas in the presence of ambient argon. J. Appl. Phys. 2014, 116, 133301. 33. Duocastella, M.; Arnold, C.B. Bessel and annular beams for material processing. Laser Photonics Rev. 2012, 6, 607-621. 34. Becker, A.; Akozbek, N.; Vijayalakshmi, K.; Oral, E.; Bowden, C.M.; Chin, S.L. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 2001, 73, 287-290. 35. Lehecka, T.; Mostovych, A.; Thomas, J. Long duration light emission from femtosecond laser-target interactions. Appl. Phys. A 2008, 92, 727-741. 36. Weck, A.; Crawford, T.H.R.; Wilkinson, D.S.; Haugen, H.K.; Preston, J.S. Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses. Appl. Phys. A 2008, 90, 537-543. 37. Zhang, N.; Zhu, X.; Yang, J.; Wang, X.; Wang, M. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of Aluminum. Phys. Rev. Lett. 2007, 99, 167602. 38. Bulgakova, N.M.; Bulgakov, A.V. Comment on "Time-Resolved Shadowgraphs of Material Ejection in Intense Femtosecond Laser Ablation of Aluminum". Phys. Rev. Lett. 2008, 101, 099701. 39. Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47-189. 40. Bulgakova, N.M.; Bulgakov, A.V. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion. Appl. Phys. A 2001, 73, 199-208. 41. Kononenko, T.V.; Garnov, S.V.; Pimenov, S.M.; Konov, V.I.; Romano, V.; Borsos, B.; Weber, W.P. Laser ablation and micropatterning of thin TiN coatings. Appl. Phys. A 2000, 71, 627-631. 42. Bulgakova, N.M.; Bulgakov, A.V.; Babich, L.P. Energy balance of pulsed laser ablation. Appl. Phys. A 2004, 79, 1323-1326. 43. Ready, J.F. Effects of High-Power Laser Radiation; Academic Press: Waltham, MA, USA, 1971. 44. McKey, J.A.; Schriempf, J.T. Anomalous infrared absorptance of aluminum under pulsed 10.6-μm laser irradiation in vacuum. Appl. Phys. Lett. 1979, 35, 433-434. 45. Paul, S.; Kudryashov, S.I.; Lyon, K.; Allen, S.D. Nanosecond-laser plasma-assisted ultradeap microdrilling of optically opaque and transparent solids. J. Appl. Phys. 2007, 101, 043106. 46. Porneala, C.; Willis, D.A. Time-resolved dynamics of nanosecond laser-induced phase explosion. J. Phys. D 2009, 42, 155503. 47. Körner, C.; Mayerhofer, R.; Hartmann, M.; Bergmann, H.W. Physical and material aspects in using visible laser pulses of nanosecond duration for ablation. Appl. Phys. A 1996, 63, 123-131. 48. Stafe, M.; Negutu, C.; Popescu, I.M. Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime. Appl. Surf. Sci. 2007, 253, 6353-6358. 49. Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite. Phys. Rev. E 2010, 82, 016404. 50. Bulgakova, N.M.; Evtushenko, A.B.; Shukhov, Y.G.; Kudryashov, S.I.; Bulgakov, A.V. Role of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulses. Appl. Surf. Sci. 2011, 257, 10876-10882. 51. Hoffman, J.; Chrzanowska, J.; Kucharski, S.; Moscicki, T.; Michailesku, I.N.; Ritoscu, C.; Szymanski, Z. The effect of laser wavelength on the ablation rate of carbon. Appl. Phys. A 2014, 117, 395-400. 52. Danilov, P.A.; Zayarnyi, D.A.; Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Rudenko, A.A.; Yurovskikh, V.I.; Kulchin, Y.N.; Kuchmizhak, A.A.; Drozdova, E.A.; Odinokov, S.B. Mechanisms of formation of sub- and micrometer-scale holes in thin metal films by single nano- and femtosecond laser pulses. Quantum Electron. 2014, 44, 540-546. 53. Craciun, V.; Craciun, D.; Bonescu, M.C.; Boulmer-Leborgne, C.; Hermann, J. Subsurface boiling during pulsed laser ablation of Ge. Phys. Rev. B 1998, 58, 6787-6790. 54. Miotello, A.; Kelly, R. Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 1999, 69, S67-S73. 55. Yoo, J.H.; Jeong, S.H.; Mao, X.L.; Greif, R.; Russo, R.E. Evidence of phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl. Phys. Lett. 2000, 76, 783-785. 56. Gurlui, S.; Agop, M.; Nica, P.; Ziskind, M.; Focsa, C. Experimental and theoretical investigations of a laser-produced aluminum plasma. Phys. Rev. E 2008, 78, 026405. 57. Basharin, A.Y.; Brykin, M.V.; Marin, M.Y.; Pakhomov, I.S.; Sitnikov, S.F. Methods of increasing the measurement accuracy during the experimental determination of the melting point of graphite. High Temper. 2004, 42, 60-67. 58. Savvatimskiy, A.I. Experimental electrical resistivity of liquid carbon in the temperature range from 4800 to similar to 20,000 K. Carbon 2009, 47, 2322-2328. 59. Artsimovich, L.A.; Sagdeev, R.Z. Plasma Physics for Physicists; Atomizdat: Moscow, USSR, 1979. 60. Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Waltham, MA, USA, 1998. 61. Winter, H.F.; Coburn, J.W. Surface science aspects of etching reactions. Surf. Sci. Rep. 1992, 14, 161-269. 62. Compagnini, G.; Scalisi, A.A.; Puglisi, O.; Spinella, C. Synthesis of gold colloids by laser ablation in thiol-alkane solutions. J. Mat. Res. 2004, 19, 2795-2798. 63. Besner, S.; Kabashin, A.V.; Meunier, M. Two-step Femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water. Appl. Phys. A 2007, 88, 269-272. 64. Kruusing, A. Underwater and water-assisted laser processing: Part 2. Etching, cutting and rarely used methods. Opt. Laser Eng. 2004, 41, 329-352. 65. Nichols, W.T.; Sasaki, T.; Koshizaki, N. Laser ablation of a platinum target in water. III. Laser-induced reactions. J. Appl. Phys. 2006, 100, 114913. 66. Vostrikov, A.A.; Shishkin, A.V.; Timoshenko, N.I. Synthesis of zink oxide nanostructures during zinc oxidation in sub- and supercritical water. Tech. Phys. Lett. 2007, 33, 30-34. 67. Ostrikov, K.; Murphy, A.B. Plasma-aided nanofabrication: Where is the cutting edge? J. Phys. D 2007, 40, 2223-2241. 68. Ostrikov, K.; Neyts, E.C.; Neyyappan, M. Plasma nanoscience: From nano-solids to nano-plasmas in solids. Adv. Phys. 2013, 62, 113-224. 69. Vorobyev, A.Y.; Guo, C. Nanochemical effects in femtosecond laser ablation of metals. Appl. Phys. Lett. 2013, 102, 074107. 70. Bulgakova, N.M.; Panchenko, A.N.; Tel'minov, A.E.; Shulepov, M.A. Formation of microtower structures on nanosecond laser ablation of liquid metals. Appl. Phys. A 2010, 98, 393-400. 71. Götz, T.; Stuke, M. Short pulse UV laser ablation of solid and liquid metals: Indium. Appl. Phys. A 1997, 64, 539-543. 72. Zergioti, I.; Stuke, M. Short pulse UV laser ablation of solid and liquid gallium. Appl. Phys. A 1998, 67, 391-395. 73. Franghiadakis, Y.; Fotakis, C.; Tzanetakis, P. Energy distribution of ions produced by excimer-laser ablation of solid and molten targets. Appl. Phys. A 1999, 68, 391-397. 74. Kiso, M.; Mizuno, K.; Suzuki, J.; Kobayashi, T. Laser ablation of a molten Ga target; Comparison of experiments and simulation. Appl. Phys. A 2002, 74, 139-141. 75. Tóth, Z.; Hopp, B.; Smausz, T.; Kántor, Z.; Ignácz, F.; Szörényi, T.; Bor, Z. Excimer laser ablation of molten metals as followed by ultrafast photography. Appl. Surf. Sci. 1999, 138-139, 130-134. 76. Tarasenko, V.; Ljubchenko, F.; Panchenko, A.; Telminov, A.; Fedenev, A. Dynamics of liquid metal surface under the action of XeCl-laser pulses. Publ. Astron. Obs. Belgrade 2008, 84, 237240. 77. Kurilova, M.V.; Uryupina, D.S.; Morshedian, N.; Savel'ev, A.B.; Volkov, R.V. Peculiarities of femtosecond laser radiation interaction with liquid metal targets. Proc. SPIE 2007, 6726, 67261L. 78. Dinescu, M.; Verardi, P.; Boulmer-Leborgne, C.; Gerardi, C.; Mirenghi, L.; Sandu, V. GaN thin film deposition by laser ablation of liquid Ga target in nitrogen reactive atmosphere. Appl. Surf. Sci. 1998, 127-129, 559-563. 79. Potts, P.J. A Handbook of Silicate Rock Analysis; Chapman & Hall: New York, NY, USA, 1987. 80. Anisimov, S.I.; Khokhlov, V.A. Instabilities in Laser-Matter Interaction; CRC Press: Boca Raton, FL, USA, 1995. 81. The used SnPb alloy was of a non-eutectic composition with a shift toward tin dominance (~20 atom %). The alloy melting temperature can be estimated as ~200 oC according to the phase diagram [30]. 82. Spivakovskii, V.B. Analytical Chemistry of Tin; Nauka: Moscow, USSR, 1975. (In Russian) 83. Bovatsek, J.; Tamhankar, A.; Patel, R.; Bulgakova, N.M.; Bonse, J. Thin film removal mechanism in ns-laser processing of photovoltaic materials. Thin Solid Films 2010, 518, 2897-2904. 84. Zorba, V.; Tzanetakis, P.; Fotakis, C.; Spanakis, E.; Stratakis, E.; Papazaglou, D.G.; Zergioti, I. Silicon electron emitters fabricated by ultraviolet laser pulses. Appl. Phys. Lett. 2006, 88, 081103. 85. Miotello, A.; Kelly, R.; Braren, B.; Otis, C.E. Novel geometrical effects observed in debris when polymers are laser sputtered. Appl. Phys. Lett. 1992, 61, 2784-2786. 86. Movtchan, I.A.; Dreyfus, R.W.; Marine, W.; Sentis, M.; Autric, M.; Le Lay, G.; Merk, N. Luminescence from a Si-SiO2 nanocluster-like structure prepared by laser ablation. Thin Solid Films 1995, 255, 286-289. 87. Patrone, L.; Nelson, D.; Safarov, V.I.; Sentis, M.; Marine, W.; Giorgio, S. Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J. Appl. Phys. 2000, 87, 3829-3837. 88. Pereira, A.; Delaporte, P.; Sentis, M.; Cros, A.; Marine, W.; Basillais, A.; Thomann, A.L.; Boulmer-Leborgne, C.; Semmar, N.; Andreazza, P.; Sauvage, T. Laser treatment of a steel surface in ambient air. Thin Solid Films 2003, 453-454, 16-21. 89. Pereira, A.; Delaporte, P.; Sentis, M.; Marine, W.; Thomann, A.L.; Boulmer-Leborgne, C. Optical and morphological investigation of backward-deposited layer induced by laser ablation of steel in ambient air. J. Appl. Phys. 2005, 98, 064902. 90. Bulgakova, N.M.; Zakharov, L.A.; Onischuk, A.A.; Kiselev, V.G.; Baklanov, A.M. Thermal and gasdynamic analysis of ablation of poly(methyl methacrylate) by pulsed IR laser irradiation under conditions of nanoparticle formation. J. Phys. D 2009, 42, 065504. 91. Hrach, R.; Vicher, M.; Hrachová, V. Study of plasma oxidation of metals. Vacuum 1998, 50, 171-173. 92. Ho, J.R.; Grigoropoulos, C.P.; Humphrey, J.A.C. Computational study of heat-transfer and gas-dynamics in the pulsed-laser evaporation of metals. J. Appl. Phys. 1995, 78, 4696-4709. 93. Garrelie, F.; Champeaux, C.; Catherinot, A. Study by a Monte Carlo simulation of the influence of a background gas on the expansion dynamics of a laser-induced plasma plume. Appl. Phys. A 1999, 69, 45-50. 94. Pathak, K.; Povitsky, A. Plume dynamics and shielding characteristics of nanosecond scale multiple pulse in carbon ablation. J. Appl. Phys. 2008, 104, 113108. 95. Wood, R.F.; Leboeuf, J.N.; Geohegan, D.B.; Puretzky, A.A.; Chen, K.R. Dynamics of plume propagation and splitting during pulsed laser ablation of Si in He and Ar. Phys. Rev. B 1998, 58, 1533-1543. 96. Siew, W.O.; Tou, T.Y.; Wong, K.H. Shadowgraphy of pulsed CO2 laser ablation of polymers. Appl. Surf. Sci. 2005, 248, 281-285. 97. Bulgakova, N.M.; Zhukov, V.P.; Meshcheryakov, Y.P. Theoretical treatments of ultrashort pulse laser processing of transparent materials: Towards understanding the volume nanograting formation and "quill" writing effect. Appl. Phys. B 2013, 113, 437-449. 98. Buividas, R.; Mikutis, M.; Juodkazis, S. Surface and bulk structuring of materials by ripples with long and short laser pulses: Resent advances. Prog. Quantum Electron. 2014, 38, 119-156. 99. Buschlinger, R.; Nolte, S.; Peschel, U. Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 2014, 89, 184306.