Инд. авторы: Moshkin N.P., Fomina A.V., Chernykh G.G.
Заглавие: On the similarity with respect to the density Froude number of the flow in turbulent wake of a towed body in a linearly stratified medium
Библ. ссылка: Moshkin N.P., Fomina A.V., Chernykh G.G. On the similarity with respect to the density Froude number of the flow in turbulent wake of a towed body in a linearly stratified medium // Thermophysics and Aeromechanics. - 2015. - Vol.22. - Iss. 2. - P.177-184. - ISSN 0869-8643. - EISSN 1531-8699.
Внешние системы: DOI: 10.1134/S0869864315020043; РИНЦ: 23989074; SCOPUS: 2-s2.0-84935920913; WoS: 000356379100004;
Реферат: eng: The flow in a far turbulent wake of a towed body has been modeled with respect to the density Froude number in a linearly stratified medium. It is shown that at sufficiently high values of the density Froude number, there is a similarity of the parameters of the wake and of the internal waves generated by it.
Ключевые слова: density Froude number; numerical modelling; Stratified fluid; Turbulent wake;
Издано: 2015
Физ. характеристика: с.177-184
Цитирование: 1. S. Hassid, Collapse of turbulent wakes in stable stratified media, J. Hydronautics, 1980, Vol. 14, No. 1, P. 25–32. 2. P. Meunier, P.J. Diamessis, and G.R. Spedding, Self-preservation in stratified momentum wakes, Phys. Fluids, 2006, Vol. 18, No. 10, P. 106601-1–106601-9. 3. G.G. Chernykh, A.V. Fomina, and N.P. Moshkin, Numerical models of turbulent wake dynamics behind towed body in linearly stratified fluid, J. Engng Thermophys., 2009, Vol. 18, No. 4, P. 279–305. 4. K.A. Brucker and S. Sarkar, A comparative study of self-propelled and towed wakes in a stratified fluid, J. Fluid Mech., 2010, Vol. 652, P. 373–404. 5. G.G. Chernykh, O.A. Druzhinin, A.V. Fomina, and N.P. Moshkin, On numerical modelling of the dynamics of turbulent wake behind a towed body in linearly stratified medium, J. Engng Thermophys., 2012, Vol. 21, No. 3, P. 155–166. 6. Yu.M. Lytkin and G.G. Chernykh, Similarity of the flow with respect to the density Froude number and energy balance at the evolution of the turbulent mixing zone in a stratified medium, in: Mathematical Problems of Continuum Mechanics: a Collection of Scientific Works, Inst. Hydrodynamics of the USSR Acad. Sci., Novosibirsk, 1980, Iss. 47, P. 70–89. 7. G.G. Chernykh and O.F. Voropayeva, Numerical modelling of momentumless turbulent wake dynamics in a linearly stratified medium, Computers and Fluids, 1999, Vol. 28, No. 3, P. 281–306. 8. W. Rodi, Turbulence Models and Their Application in Hydraulics, University of Karlsruhe, 1980. 9. W. Rodi, Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res., 1987, Vol. 92, No. C5, P. 5305–5328. 10. A.S. Ginevsky, Theory of Turbulent Jets and Wakes, Mashinostroenie, Moscow, 1969. 11. O.V. Kaptsov, A.V. Fomina, G.G. Chernykh, and A.V. Schmidt, Self-similar degeneration of the turbulent wake behind a body towed in a passively stratified medium, J. Appl. Mech. Tech. Phys., 2012, Vol. 53, No. 5, P. 672–678. 12. J.T. Lin and Y.H. Pao, Wakes in stratified fluids, Annu. Rev. Fluid Mech., 1979, Vol. 11, P. 317–338.