Инд. авторы: Shtyrina O.V., Yarutkina I.A., Skidin A., Fedoruk M.P., Turitsyn S.K.
Заглавие: Impact of the Order of Cavity Elements in All-Normal Dispersion Ring Fiber Lasers
Библ. ссылка: Shtyrina O.V., Yarutkina I.A., Skidin A., Fedoruk M.P., Turitsyn S.K. Impact of the Order of Cavity Elements in All-Normal Dispersion Ring Fiber Lasers // IEEE Photonics Journal. - 2015. - Vol.7. - Iss. 2. - Art.1501207. - ISSN 1943-0655. - EISSN 1943-0647.
Внешние системы: DOI: 10.1109/JPHOT.2015.2413591; РИНЦ: 24021774; SCOPUS: 2-s2.0-84927138999; WoS: 000352274100008;
Реферат: eng: Nonlinearity plays a critical role in the intra-cavity dynamics of high-pulse energy fiber lasers. Management of the intra-cavity nonlinear dynamics is the key to increase the output pulse energy in such laser systems. Here, we examine the impact of the order of the intra-cavity elements on the energy of generated pulses in the all-normal dispersion mode-locked ring fiber laser cavity. In mathematical terms, the nonlinear light dynamics in resonator makes operators corresponding to the action of laser elements (active and passive fiber, out-coupler, saturable absorber) non-commuting and the order of their appearance in a cavity important. For the simple design of all-normal dispersion ring fiber laser with varying cavity length, we found the order of the cavity elements, leading to maximum output pulse energy.
Ключевые слова: Ring lasers; Fiber lasers;
Издано: 2015
Физ. характеристика: 1501207
Цитирование: 1. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE J. Quantum Electron., vol. QE-11, no. 9, pp. 736-746, Sep. 1975. 2. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1173-1185, Nov./Dec. 2000. 3. O. E. Martinez, R. L. Fork, and J. P. Gordon, "Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient," J. Opt. Soc. Amer. B, vol. 2, no. 5, pp. 753-760, May 1985. 4. P. Grelu and N. Akhmediev, "Dissipative solitons for mode-locked lasers," Nature Photon., vol. 6, no. 2, pp. 84-92, Jan. 2012. 5. T. Brabec, C. Spielmann, and F. Krausz, "Mode locking in solitary lasers," Opt. Lett., vol. 16, no. 24, pp. 1961-1963, Dec. 1991. 6. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, "Spectral filtering for mode locking in the normal dispersive regime," Opt. Lett., vol. 33, no. 9, pp. 941-943, May 2008. 7. B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, "Intracavity dynamics in high-power mode-locked fiber lasers," Phys. Rev. A, A 81, Mar. 2010, Art. ID. 033828. 8. B. Oktem, C. Ülgüdür, and F. Ömer Ilday, "Soliton-similariton fibre laser," Nature Photon., vol. 4, pp. 307-311, Mar. 2010. 9. B. G. Bale, O. G. Okhotnikov, and S. K. Turitsyn, "Modeling and technologies of ultrafast fiber lasers," in Fiber Lasers, O. G. Okhotnikov, Ed. Weinheim, Germany: Wiley-VCH Verlag GmbH Co., 2012. 10. F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photon. Rev., vol. 2, no. 1/2, pp. 58-73, Apr. 2008. 11. V. L. Kalashnikov and A. Apolonski, "Chirped-pulse oscillators: A unified standpoint," Phys. Rev. A, vol. A-79, Apr. 2009, Art. ID. 043829. 12. S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high-energy pulses," Opt. Exp., vol. 16, no. 26, pp. 21 936-21 941, Dec. 2008. 13. E. J. R. Kelleher et al., "Generation and direct measurement of giant chirp in a passively mode-locked laser," Opt. Lett., vol. 34, no. 22, pp. 3526-3528, Nov. 2009. 14. B. N. Nyushkov et al., "Generation of 1.7-μJ pulses at 1.55 μm by a self-modelocked all-fiber laser with a kilometers-long linear-ring cavity," Laser Phys. Lett., vol. 7, no. 9, pp. 661-665, 2010. 15. S. K. Turitsyn, "Theory of energy evolution in laser resonators with saturated gain and non-saturated loss," Opt. Exp., vol. 17, no. 14, pp. 11898-11904, Jul. 2009. 16. V. I. Denisov, B. N. Nyushkov, and V. S. Pivtsov, "Self-mode-locked all-fibre erbium laser with a low repetition rate and high pulse energy," Quantum Electron., vol. 40, no. 1, pp. 25-27, 2010. 17. N. Li et al., "Cavity-length optimization for high energy pulse generation in a long cavity passively mode-locked allfiber ring laser," Appl. Opt., vol. 51, no. 17, pp. 3726-3730, Jun. 2012. 18. A. Boucon et al., "Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser," Appl. Phy. B, vol. 106, no. 2, pp. 283-287, Feb. 2012. 19. Z. Q. Luo et al., "Raman fiber laser harmonically mode-locked by exploiting the intermodal beating of CW multimode pump source," Opt. Exp., vol. 20, no. 18, pp. 19 905-19 911, Aug. 2012. 20. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse modelocked fiber lasers by numerical simulations," Opt. Exp., vol. 15, no. 13, pp. 8252-8262, Jun. 2007. 21. X. H. Li et al., "Long cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime," Opt. Lett., vol. 35, no. 19, pp. 3249-3251, Oct. 2010. 22. X. H. Li et al., "Wavelength switchable and tunable all-normal-dispersion Yb-doped mode-locked fiber laser based on single-wall carbon nanotubes wall paper," IEEE Photon. J., vol. 4, no. 1, no. 4, pp. 234-241, Feb. 2012. 23. I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk, and S. K. Turitsyn, "Numerical modeling of fiber lasers with long and ultra-long ring cavity," Opt. Exp., vol. 21, no. 10, pp. 12 942-12 950, May 2013. 24. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, "Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser," Opt. Lett., vol. 19, pp. 46-48, Jan. 1994. 25. C. M. Ouyang et al., "Position effect of spectral filter on properties of highly chirped pulses in an all-normaldispersion fiber laser," IEEE J. Quantum Electron., vol. 45, no. 10, pp. 1284-1288, Oct. 2009.