Инд. авторы: Kharenko Denis S., Bednyakova Anastasia E., Podivilov Evgeniy V., Fedoruk Mikhail P., Apolonski Alexander, Babin Sergey A.
Заглавие: Feedback-controlled Raman dissipative solitons in a fiber laser
Библ. ссылка: Kharenko Denis S., Bednyakova Anastasia E., Podivilov Evgeniy V., Fedoruk Mikhail P., Apolonski Alexander, Babin Sergey A. Feedback-controlled Raman dissipative solitons in a fiber laser // Optics Express. - 2015. - Vol.23. - Iss. 2. - P.1857-1862. - ISSN 1094-4087.
Внешние системы: DOI: 10.1364/OE.23.001857; РИНЦ: 23969337; PubMed: 25835939; SCOPUS: 2-s2.0-84921770097; WoS: 000349166100120;
Реферат: eng: Energy of chirped dissipative solitons (DS) generated in fiber lasers may exceed a threshold of stimulated Raman scattering (SRS) leading to formation of a noisy Raman pulse (RP). As we demonstrated recently, a feedback loop providing re-injection of the Raman pulse into the laser cavity can form a Raman dissipative soliton (RDS) with similar characteristics to those of the main dissipative soliton. Here, we present the results of feedback optimization of the generated RDS spectra. First experimental results of coherent combining of DS and RDS are also shown. (C) 2015 Optical Society of America
Издано: 2015
Физ. характеристика: с.1857-1862
Цитирование: 1. P. Grelu and N. N. Akhmediev, "Dissipative solitons for mode-locked lasers," Nat. Photonics 6, 84-92 (2012). 2. W. H. Renninger and F. W. Wise, "Dissipative soliton fiber laser," in "Fiber Lasers," O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97-134. 3. F. O. Ilday, J. R. Buckley, W. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004). 4. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007). 5. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005). 6. A. Chong, W. H. Renninger, and F. W. Wise, "Environmentally stable all-normal-dispersion femtosecond fiber laser," Opt. Lett. 33, 1071-1073 (2008). 7. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, "Environmentally stable all-PM all-fiber giant chirp oscillator," Opt. Express 20, 22669-22674 (2012). 8. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Opt. Lett. 38, 2644-2646 (2013). 9. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, "20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator," Opt. Lett. 37, 4104-4106 (2012). 10. A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, "Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering," Opt. Express 21, 20556-20564 (2013). 11. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. A. Apolonski, "Multicolour nonlinearly bound chirped dissipative solitons," Nat. Commun. 5, 4653 (2014). 12. A. Sokolov, D.Walker, D. Yavuz, G. Yin, and S. Harris, "Raman Generation by Phased and Antiphased Molecular States," Phys. Rev. Lett. 85, 562-565 (2000). 13. C. Xu and F. W. Wise, "Recent advances in fiber lasers for nonlinear microscopy," Nat. Photonics 7, 875-882 (2013). 14. L. K. Oxenløwe, "Optical communications: Single-laser super-channel," Nat. Photonics 5, 329-331 (2011).