Инд. авторы: Kofanov A.V., Liseikin V.D., Rychkov A.D.
Заглавие: Application of coordinate transformations in numerical simulation of tsunami runup by the large particle method
Библ. ссылка: Kofanov A.V., Liseikin V.D., Rychkov A.D. Application of coordinate transformations in numerical simulation of tsunami runup by the large particle method // Computational Mathematics and Mathematical Physics. - 2015. - Vol.55. - Iss. 1. - P.109-116. - ISSN 0965-5425. - EISSN 1555-6662.
Внешние системы: DOI: 10.1134/S0965542515010145; РИНЦ: 23970413; SCOPUS: 2-s2.0-84922031903; WoS: 000348997900010;
Реферат: eng: A numerical algorithm for computing the runup of a solitary tsunami wave in the case of complex shoreline topography is proposed. The algorithm involves the construction of coordinate mappings that transform a uniform rectangular grid over a reference computational domain into a grid over a physical domain with mesh refinement near the shoreline. The application of such coordinate mappings makes it possible to substantially reduce the number of grid points and save computation time. The mathematical model is based on the shallow water equations, and the problem is solved using the large particle method. An actual example is used to illustrate the computation of a curvilinear grid and the inundation area configuration.
Ключевые слова: adaptive numerical grids; Coordinate transformations; inverted Beltrami and diffusion equations; Shallow water equations; Particle-in-cell method; tsunami;
Издано: 2015
Физ. характеристика: с.109-116
Цитирование: 1. V. L. Agoshkov, D. Ambrosi, V. Pennati, A. Quarteroni, and F. Saleri, “Mathematical and numerical modeling of shallow water flow,” Comput. Mech. 11(5–6), 280–299 (1993). 2. K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, and T. Tezduyar, “Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows,” Comput. Mech. 23(2), 144–150 (1999). 3. A. Mohammadian, D. Y. Le Roux, and M. Tajrishi, “A conservative extension of the method of characteristics for 1D shallow flows,” Appl. Math. Model. 31(2), 332–348 (2007). 4. J.-S. Lai, W.-D. Guo, G.-F. Lin, and Y.-C. Tan, “A well-balanced upstream flux-splitting finite-volume scheme for shallow-water flow simulations with irregular bed topography,” Int. J. Numer. Methods Fluids 62(8), 927–944 (2010). 5. E. D. Fernandez-Nieto, J. Marin, and J. Monnier, “Coupling superposed 1D and 2D shallow-water models: Source terms in finite volume schemes,” Comput. Fluids 39(6), 1070–1082 (2010). 6. G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, “Two-dimensional SPH simulations of wedge water entries,” J. Comput. Phys. 213, 803–822 (2006). 7. S. S. Khrapov, A. V. Khoperskov, N. M. Kuz’min, A. V. Pisarev, and I. A. Kobelev, “Numerical scheme for simulation of surface water dynamics based on the combined SPH-TVD approach,” Vychisl. Metody Program. 12, 282–297 (2011). 8. O. M. Belotserkovskii and Yu. M. Davydov, Large Particle Method in Gas Dynamics (Nauka, Moscow, 1982) [in Russian]. 9. M. De Leffe, D. Le Touze, and B. Alessandrini, “SPH modeling of shallow-water coastal flows,” J. Hydraulic Res. 48, Extra Issue, 118–125 (2010). 10. A. V. Kofanov and V. D. Liseikin, “Grid construction for discretely defined configurations,” Comput. Math. Math. Phys. 53(6), 759–765 (2013). 11. A. V. Kofanov, V. D. Liseikin, and A. D. Rychkov, “Application of the spherical metric tensor to grid adaptation and the solution of applied problems,” Comput. Math. Math. Phys. 52(4), 548–564 (2012). 12. V. D. Liseikin, Grid Generation Methods (Springer, Berlin, 2010). 13. V. D. Liseikin, A. D. Rychkov, and A. V. Kofanov, “Applications of a comprehensive grid method to solution of three-dimensional boundary value problems,” J. Comput. Phys. 230, 7755–7774 (2011). 14. V. D. Liseikin, A. D. Rychkov, and A. V. Kofanov, Adaptive Mesh Technology for the Numerical Solution of Applied Problems (Novosibirsk. Gos. Univ., Novosibirsk, 2011) [in Russian]. 15. N. T. Danaev, V. D. Liseikin, and N. N. Yanenko, “Numerical moving-grid computation of viscous gas flows past bodies of revolution,” in Numerical Methods in Continuum Mechanics (Vychisl. Tsentr Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1980), Vol. 11, No. 1, pp. 51–61 [in Russian]. 16. A. M. Winslow, Adaptive Mesh Zoning by the Equipotential Method, UCID-19062 (Lawrence Livermore National Laboratories, 1981). 17. V. A. Garanzha, “Barrier method for quasi-isometric grid generation,” Comput. Math. Math. Phys. 40(11), 1617–1637 (2000).