Инд. авторы: Thalabard Simon, Nazarenko Sergey, Galtier Sebastien, Medvedev Sergey
Заглавие: Anomalous spectral laws in differential models of turbulence
Библ. ссылка: Thalabard Simon, Nazarenko Sergey, Galtier Sebastien, Medvedev Sergey Anomalous spectral laws in differential models of turbulence // Journal of Physics A: Mathematical and Theoretical. - 2015. - Vol.48. - Iss. 28. - Art.285501. - ISSN 1751-8113. - EISSN 1751-8121.
Внешние системы: DOI: 10.1088/1751-8113/48/28/285501; РИНЦ: 23990691; SCOPUS: 2-s2.0-84937124127; WoS: 000357281400011;
Реферат: eng: Differential models for hydrodynamic, passive-scalar and wave turbulence given by nonlinear first-and second-order evolution equations for the energy spectrum in the k-space were analysed. Both types of models predict formation an anomalous transient power-law spectra. The second-order models were analysed in terms of self-similar solutions of the second kind, and a phenomenological formula for the anomalous spectrum exponent was constructed using numerics for a broad range of parameters covering all known physical examples. The first-order models were examined analytically, including finding an analytical prediction for the anomalous exponent of the transient spectrum and description of formation of the Kolmogorov-type spectrum as a reflection wave from the dissipative scale back into the inertial range. The latter behaviour was linked to pre-shock/shock singularities similar to the ones arising in the Burgers equation. Existence of the transient anomalous scaling and the reflection-wave scenario are argued to be a robust feature common to the finite-capacity turbulence systems. The anomalous exponent is independent of the initial conditions but varies for for different models of the same physical system.
Ключевые слова: turbulence; Differential models; Anomalous exponents;
Издано: 2015
Физ. характеристика: 285501
Цитирование: 1. Leith C E 1967 Phys. Fluids 10 1409-16 2. Kovasznay L S G 1948 J. Aeronaut. Sci. 15 745-53 3. Hasselmann S and Hasselmann K 1985 J. Phys. Oceanogr. 15 1369-77 4. Lvov V, Nazarenko S and Rudenko O 2008 J. Low Temp. Phys. 153 140-61 5. Lilly D K 1989 J. Atmos. Sci. 46 2026-30 6. Nazarenko S 2007 JETP Lett. 84 585-7 7. Nazarenko S 2006 J. Exp. Theor. Phys. Lett. 83 198-200 8. Galtier S, Nazarenko S, Newell A C and Pouquet A 2000 J. Plasma Phys. 63 447-88 9. Connaughton C and Nazarenko S 2004 Phys. Rev. Lett. 92 044501 10. Bos W J, Connaughton C and Godeferd F 2012 Physica D: Nonlinear Phenom. 241 232-6 11. Grebenev V N, Nazarenko S V, Medvedev S B, Schwab I V and Chirkunov Y A 2014 J. Phys. A: Math. Theor. 47 025501 12. Sulem C, Sulem P L and Frisch H 1983 J. Comput. Phys. 50 138-61 13. Barenblatt G and Zeldovich Y 1972 Annu. Rev. Fluid Mech. 4 285 14. Batchelor G K 1959 J. Fluid Mech. 5 113-33 15. Obukhov A 1949 Izv. Akad. Nauk SSSR Ser. Geogr. Geophys. 13 58 16. Corrsin S 1951 J. Appl. Phys. 22 469-73 17. Zakharov V E and Filonenko N N 1967 Sov. Phys.-Dokl. 11 881-3 18. Zakharov V E and Pushkarev A 1999 Nonl. Proc. Geophys. 6 1-10 19. Nazarenko S 2006 J. Stat. Mech. L02002 20. Pushkarev A and Zakharov V 2000 Physica D: Nonlinear Phenom. 135 98-116 21. Zakharov V E and Sagdeev R Z 1970 Sov. Phys.- Dokl. 15 439 22. Iroshnikov P S 1964 Sov. Astron. 7 566 23. Galtier S and Buchlin É 2010 Astrophys. J. 722 1977 24. Lvov V S and Nazarenko S 2010 Low Temp. Phys. 36 785-91 25. Boué L, Dasgupta R, Laurie J, Lvov V, Nazarenko S and Procaccia I 2011 Phys. Rev. B 84 064516 26. Nazarenko S and Laval J P 2000 J. Fluid Mech. 408 301-21 27. Brachet M E, Meneguzzi M, Vincent A, Politano H and Sulem P L 1992 Phys. Fluids A: Fluid Dyn. (1989-1993) 4 2845-54 28. Cichowlas C and Brachet M E 2005 Fluid Dyn. Res. 36 239-48