Инд. авторы: Churkin D.V., Sugavanam S., Tarasov N., Khorev S., Smirnov S.V., Kobtsev S.M., Turitsyn S.K.
Заглавие: Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers
Библ. ссылка: Churkin D.V., Sugavanam S., Tarasov N., Khorev S., Smirnov S.V., Kobtsev S.M., Turitsyn S.K. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers // Nature Communications. - 2015. - Vol.6. - Art.7004. - ISSN 2041-1723.
Внешние системы: DOI: 10.1038/ncomms8004; РИНЦ: 24031780; PubMed: 25947951; SCOPUS: 2-s2.0-84929223506; WoS: 000355529500001;
Реферат: eng: Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.
Издано: 2015
Физ. характеристика: 7004
Цитирование: 1. Renninger, W. H. & Wise, F. W. in Fiber Lasers (eds Okhotnikov, O. G.) Chap. 4 (Wiley-VCH, 2012). 2. Smirnov, S. V., Kobtsev, S. M., Kukarin, S. V. & Turitsyn, S. K. in Laser Systems for Applications (ed. Jakubczak, K.) Chap. 3 (InTech, 2011). 3. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 26, 84-92 (2012). 4. Runge, A. F., Aguergaray, C., Broderick, N. G. & Erkintalo, M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Opt. Lett. 38, 4327-4330 (2013). 5. Kobtsev, S. M. & Smirnov, S. V. Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length. Laser Phys. 21, 272-276 (2011). 6. Horowitz, M., Barad, Y. & Silberberg, Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt. Lett. 22, 799-801 (1997). 7. Kobtsev, S., Kukarin, S., Smirnov, S., Turitsyn, S. & Latkin, A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Opt. Express 23, 20707-20713 (2009). 8. Chouli, S. & Grelu, P. Rains of solitons in a fiber laser. Opt. Express 17, 11776-11781 (2009). 9. Chouli, S. & Grelu, P. Soliton rains in a fiber laser: an experimental study. Phys. Rev. A 81, 063829 (2010). 10. Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005). 11. Tang, D. et al. Dark soliton fiber lasers. Opt. Express 22, 19831-19837 (2014). 12. Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 88, 073903 (2002). 13. Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2, 36-39 (2015). 14. Lecaplain, C., Grelu, P., Soto-Crespo, J. M. & Akhmediev, N. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012). 15. Runge, A. F. J., Aguergaray, C., Broderick, N. G. R. & Erkintalo, M. Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett. 39, 319-322 (2014). 16. Lecaplain, C. & Grelu, P. Rogue waves among noise like-pulse laser emission: an experimental investigation. Phys. Rev. A 90, 013805 (2014). 17. Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755-764 (2014). 18. Kärtner, F. X., Zumbühl, D. M. & Matuschek, N. Turbulence in mode-locked lasers. Phys. Rev. Lett. 82, 4428-4431 (1999). 19. Wabnitz, S. Optical turbulence in fiber lasers. Opt. Lett. 39, 1362-1365 (2014). 20. Picozzi, A. et al. Optical wave turbulence: toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1-132 (2014). 21. Kobtsev, S., Kukarin, S. & Fedotov, Yu. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Opt. Express 16, 21936-21941 (2008). 22. Nyushkov, B. N. et al. Gamma-shaped long-cavity normal-dispersion modelocked Er- laser for sub-nanosecond high-energy pulsed generation. Laser Phys. Lett. 9, 59-67 (2012). 23. Sorokina, M. A. & Turitsyn, S. K. Regeneration limit of classical Shannon capacity. Nat. Commun. 5, 3861 (2014). 24. Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses Vol. 1 (Springer, 2000). 25. Wong, T. C., Rhodes, M. & Trebino, R. Single-shot measurement of the complete temporal intensity and phase of supercontinuum. Optica 1, 119-124 (2014). 26. Smirnov, S., Kobtsev, S., Kukarin, S. & Ivanenko, A. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers modelocked with nonlinear polarization rotation. Opt. Express 20, 27447-27453 (2012). 27. Turitsyna, E. G. et al. The laminar-turbulent transition in a fibre laser. Nat. Photonics 7, 783-786 (2013). 28. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics 7, 657-663 (2013). 29. Garbin, B., Javaloyes, J., Tissoni, G. & Barland, S. Topological solitons as addressable phase bits in a driven laser. Nat. Commun. 6, 5915 (2015). 30. Kelleher, E. J. R. & Travers, J. C. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Opt. Lett. 39, 1398-1401 (2014). 31. Staliunas, K. & Sanchez-Morcillo, V. J. Transverse Patterns in Nonlinear Optical Resonators. Springer Tracts in Modern Physics 183 ISBN 3-540-00434-3 (2008). 32. Masoller, C. Spatiotemporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback. Chaos 7, 455-462 (1997). 33. Scott, A. C. (ed.), Encyclopedia of Nonlinear Science (Taylor & Francis (Routledge), New York, 2004). 34. Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102-112 (2013). 35. Solli, D. R., Herink, G., Jalali, B. & Ropers, C. Fluctuations and correlations in modulation instability. Nat. Photonics 6, 463-468 (2012). 36. Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192-196 (2011).