Инд. авторы: Slyadnikov E.E., Turchanovskii I.Yu.
Заглавие: Kinetic model of a nonequilibrium phase transition stimulated by a heat source
Библ. ссылка: Slyadnikov E.E., Turchanovskii I.Yu. Kinetic model of a nonequilibrium phase transition stimulated by a heat source // Russian Physics Journal. - 2015. - Vol.58. - Iss. 2. - P.233-241. - ISSN 1064-8887. - EISSN 1573-9228.
Внешние системы: DOI: 10.1007/s11182-015-0487-8; РИНЦ: 26900156; SCOPUS: 2-s2.0-84956936156; SCOPUS: 2-s2.0-84930607236; WoS: 000357596600014;
Реферат: eng: A kinetic model of a nonequilibrium first-order phase transition stimulated by a heat source on the surface of a solid body is constructed that takes account the finite width of the phase interface as well as thermodynamic fluctuations of the order parameter and fluctuations of the potential relief of the atoms of the medium in the vicinity of the critical point of the phase transition.
Ключевые слова: fluctuations of the potential relief of the atoms of the medium; heat source; nonequilibrium phase transition;
Издано: 2015
Физ. характеристика: с.233-241
Цитирование: 1. A. D. Bruce and R. A. Cowley, Structural Phase Transitions, Taylor & Francis, Abingdon, UK (1981). 2. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Statistical Physics, Vol. 5 (3rd edition), Butterworth-Heinemann, London (1980). 3. A. I. Lotkov, S. G. Psakh’e, A. G. Knyazeva, et al., Nano-Engineering of Surfaces. Formation of Nonequilibrium States in Surface Layers of Materials by Methods of Electron–Ion Plasma Technologies [in Russian], Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk (2008). 4. I. P. Chernov, M. Kh. Krenig, and N. V. Koval’, Zh. Tekh. Fiz., 82, No. 3, 81–88 (2012). 5. H. Haken, Synergetics, Springer Science & Business Media, Berlin (2004). 6. A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow (1967). 7. E. E. Slyadnikov and I. Yu. Turchanovskii, Izv. Vyssh. Uchebn. Zaved. Fiz., 56, No. 9/2, 149–150 (2013). 8. G. J. Fix, in: Free Boundary Problems: Theory and Applications, A. Fasano and M. Primicerio, eds., Pitman, Boston (1983), pp. 580–589. 9. V. E. Egorushkin, V. E. Panin, E. V. Savushkin, and Yu. A. Khon, Russ. Phys. J., 30, No. 1, 5–24 (1987). 10. V. E. Egorushkin and N. V. Mel’nikova, Zh. Eksp. Teor. Fiz., 103, No. 2, 214–226 (1993).