Инд. авторы: Korobitsyn V.A., Shokin Yu.I.
Заглавие: Orthogonal transformations of differential-difference schemes. Introduction to discrete analysis
Библ. ссылка: Korobitsyn V.A., Shokin Yu.I. Orthogonal transformations of differential-difference schemes. Introduction to discrete analysis // Russian Journal of Numerical Analysis and Mathematical Modelling. - 2014. - Vol.29. - Iss. 4. - P.219-230. - ISSN 0927-6467. - EISSN 1569-3988.
Внешние системы: DOI: 10.1515/rnam-2014-0017; РИНЦ: 24004599; SCOPUS: 2-s2.0-84910140400; WoS: 000342126800002;
Реферат: eng: Transformations of consistent discrete approximations of first derivatives in the passage from Cartesian coordinates to an orthogonal curvilinear system and transformations of discrete operations of vector analysis on skewed grids on a plane are studied in the paper. It is established that the transformation algorithm for discrete operators preserves symmetries of discrete solutions relative to coordinate curves inherent from differential system of equations. It also maintains the consistency of discrete operators, which allows us to construct completely conservative differential-difference schemes for discrete domains with curvilinear boundaries.
Ключевые слова: basis operators; volume change law.; discrete analogue of integral relation; Compatible discrete approximations;
Издано: 2014
Физ. характеристика: с.219-230
Цитирование: 1. E. J. Caramana and P. P. Whalen, Numerical preservation of symmetry properties of continuum problems. J. Comp. Phys. 141 (1998), 174-198. 2. G. B. Efimov, V. F. Tishkin, M. Shashkov, and I. B. Shenkov, Automatic programming of operator difference schemes. Preprint No. 20 of Keldysh Inst. Appl. Math. USSR Acad. Sci. 1982 (in Russian). 3. V. A. Korobitsyn, Conservation laws in discrete models of continuous media. Numer. Methods Continuum Mech. 17 (1986), No. 4, 77-101. 4. V. A. Korobitsyn, The laws of conservation of invariant differential-difference schemes. Math. Modelling 1 (1989), No. 8, 110-115. 5. V. A. Korobitsyn, Thermodynamically consistent finite difference schemes. USSR Comput. Math. Math. Phys. 29 (1989), No. 1, 217-219. 6. V. A. Korobitsyn, Basis difference method for orthogonal systems on a surface. USSR Comput. Math. Math. Phys. 51 (2011), No. 7, 1308-1316. 7. R. Ë. Loubere, P.-H. Maire, M. Shashkov, J. Breil, and S. Galera, ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method. J. Comp. Phys. 229 (2010), 4724-4761. 8. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics. Russ. Acad. Sci., Moscow, 1979 (in Russian). 9. A. A. Samarskii, A. V. Koldoba, Yu. A. Poveshchenko, V. F. Tishkin, and A. P. Favorskii, Difference Schemes on Irregular Grids. Minsk, 1996 (in Russian). 10. M. Shashkov, Conservative Finite-Difference Methods on General Grids. CRC Press, New York, 1996. 11. Yu. I. Shokin, The Method of Differential Approximation. Springer-Verlag, Berlin, 1983. 12. V. F. Tishkin, N. N. Turina, and A. P. Favorskii, Difference schemes for the calculation of hydrodynamic flows in cylindrical coordinates. Preprint No. 23 of Keldysh Inst. Appl. Math. USSR Acad. Sci. 1978 (in Russian). 13. V. V. Zharovtsev, A completely conservative difference scheme for gas dynamic equations. USSR Comp. Math. Math. Phys. 17 (1977), No. 5, 221-225.