Инд. авторы: Yarutkina I.A., Shtyrina O.V., Skidin A.S., Fedoruk M.P.
Заглавие: Theoretical study of energy evolution in ring cavity fiber lasers
Библ. ссылка: Yarutkina I.A., Shtyrina O.V., Skidin A.S., Fedoruk M.P. Theoretical study of energy evolution in ring cavity fiber lasers // Optics Communications. - 2015. - Vol.342. - P.26-29. - ISSN 0030-4018.
Внешние системы: DOI: 10.1016/j.optcom.2014.12.050; РИНЦ: 23962582; SCOPUS: 2-s2.0-84919774904; WoS: 000350833400004;
Реферат: eng: The theoretical study of the output energy evolution in ring fiber lasers is conducted. The analytical expression of the energy evolution in the laser cavity is proposed. It expands the theory developed previously by taking into account the saturable absorber losses. The results are verified by the mathematical modeling.
Ключевые слова: Dissipative soliton; Laser theory; Fiber laser;
Издано: 2015
Физ. характеристика: с.26-29
Цитирование: 1. S.K. Turitsyn, Theory of energy evolution in laser resonators with saturated gain and non-saturated loss, Opt. Express 17 (2009) 11898-11904. 2. H.A. Haus, Theory of mode locking with a slow saturable absorber, IEEE J. Quantum Elect 11 (1975) 736-746. 3. A.E. Siegman, Lasers, University Science Books, Mill Walley, California, US, 1986. 4. M. Fernandez-Vallejo, S. Rota-Rodrigo, M. Lopez-Amo, Comparative study of ring and random cavities for fiber lasers, Appl. Opt. 53 (2014) 3501-3507. 5. N. Akhmediev, A. Ankiewicz, Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys. 751 (2008). 6. F. Zhang, P.L. Chu, Effect of transmission fiber on chaos communication system based on erbium-doped fi ber ring laser, J. Lightw. Technol. 21 (2003) 3334-3343. 7. Z. Lin, C. Liu, G. Keiser, Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high-speed communications, Opt.-Int. J. Light Electron Opt. 123 (2012) 46-48. 8. W. Qiao, Z. Xiaojun, L. Zongsen, W. Yonggang, S. Liqun, N. Hanben, Simple method of optical ring cavity design and its applications, Opt. Express 22 (2014) 14782-14791. 9. I.A. Yarutkina, O.V. Shtyrina, M.P. Fedoruk, S.K. Turitsyn, Numerical modeling of fiber lasers with long and ultra-long ring cavity, Opt. Express 21 (2013) 12942-12950. 10. B.G. Bale, O.G. Okhotnikov, S.K. Turitsyn, Modeling and technologies of ultrafast fiber lasers, in: O.G. Okhotnikov (Ed.), Fiber Lasers, Wiley-VCH Verlag GmbH Co., Weinheim, 2012. 11. P. Grelu, N. Akhmediev, Dissipative solitons for mode-locked lasers, Nat. Photonics 6 (2012) 84-92. 12. T. Schreiber, B. Ortac¸, J. Limpert, A. Tünnermann, On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations, Opt. Express 15 (2007) 8252-8262. 13. F.W. Wise, A. Chong, W.H. Renninger, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion, Laser Photonics Rev. 2 (2008) 58-73. 14. V.L. Kalashnikov, E. Podivilov, A. Chernykh, A. Apolonski, Chirped-pulse oscillators: theory and experiment, Appl. Phys. B 83 (2006) 503-510. 15. X. Liu, Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity, Opt. Express 17 (2009) 22401-22416. 16. A. Martinez, S. Yamashita, Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes, Opt. Express 19 (2011) 6155-6163. 17. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, O. Okhotnikov, Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers, J. Opt. Soc. Am. B 26 (2009) 346-352. 18. S.K. Turitsyn, B. Bale, M.P. Fedoruk, Dispersion-managed solitons in fibre systems and lasers, Phys. Rep. 521 (2012) 135-203. 19. B. Oktem, C. Ülgüdür, F. Ömer Ilday, Soliton-similariton fibre laser, Nat. Photonics 4 (2010) 307-311.