Инд. авторы: Baev M. K., Chernykh G.G.
Заглавие: On the numerical modeling of the dynamics of homogeneous isotropic turbulence
Библ. ссылка: Baev M. K., Chernykh G.G. On the numerical modeling of the dynamics of homogeneous isotropic turbulence // Thermophysics and Aeromechanics. - 2014. - Т.21. - № 4. - С.441-447. - ISSN 0869-8643. - EISSN 1531-8699.
Внешние системы: DOI: 10.1134/S0869864314040040; РИНЦ: 24022369; SCOPUS: 2-s2.0-84919795309; WoS: 000343158200004;
Реферат: eng: Using a series of mathematical models based on the closed Karman-Howarth equation, the numerical modeling of the dynamics of homogeneous isotropic turbulence was carried out. Computational results agree with known experimental data. Mathematical models are compared.
Ключевые слова: numerical modeling; Karman-howarth equation; homogeneous isotropic turbulence;
Издано: 2014
Физ. характеристика: с.441-447
Цитирование: 1. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2, Dover Publications, New York, 2007. 2. M.K. Baev and G.G. Chernykh, On Corrsin equation closure, J. Engng. Thermophys., 2010, Vol. 19, No. 3, P. 154–169. 3. M.K. Baev and G.G. Chernykh, Numerical model of a turbulent flow behind a heated grid in a wind tunnel, Math. Models and Computer Simulations, 2012, Vol. 4, No. 3, P. 321–335. 4. A.B. Vatazhin, Electrohydrodynamic turbulent flows, Trudy MIAN SSSR “Advanced Mathematical Problems of Mechanics and Their Applications, to the 80th Anniversary of Leonid Ivanovich Sedov”, 1989, Vol. 186, P. 168–176. 5. A.T. Onufriev, Description of Turbulent Transfer. Nonequilibrium Models: School-book, MIPT (SU), Moscow, 1995. 6. A.T. Onufriev and O.A. Pyrkova, Problem of the Decay of Weak Turbulence in a Homogeneous Isotropic Flow, Preprint No. 2005-1, Moscow Physical-Technological Institute, Moscow, 2005. 7. A.A. Onufriev, A.T. Onufriev, and O.A. Pyrkova, Approximate Solution of the Problem of the Decay of Homogeneous Isotropic Turbulence with Regard for the Intermittency Phenomenon in the Flow, Preprint No. 2008-1, Moscow Physical-Technological Institute, Moscow, 2008. 8. A.A. Onufriev, A.T. Onufriev, and O.A. Pyrkova, Problem of the decay of homogeneous isotropic turbulence with regard for the intermittency phenomenon, in: Topical Problems of the Basic and Applied Mathematics: Collection of Scientific Works, Moscow Physical-Technological Institute, Moscow, 2009, P. 124–135. 9. O.A. Pyrkova, A.A. Onufriev, and A.T. Onufriev, Velocity behavior in a homogeneous isotropic flow at the initial stage, Trudy MFTI, 2011, Vol. 3, No. 1, P. 127–131. 10. Yu.M. Lytkin and G.G. Chernykh, About one way of von Karman—Howarth equation closure, Dinamika Sploshnoy Sredy, Novosibirsk, 1976, No. 27, P. 124–130. 11. Yu.M. Lytkin and G.G. Chernykh, The calculations of correlation functions in isotropic turbulence, Dinamika Sploshnoy Sredy, Novosibirsk, 1978, No. 35, P. 74–88. 12. E.V. Teodorovich and V.A. Frost, Two-point triple correlations of velocity field in homogeneous turbulence. II. The accuracy of approximations, Preprint No. 958, Inst. for Problems in Mech. RAS, Moscow, 2010. 13. V.A. Babenko and V.A. Frost, Approximation accuracy of the two-point third moments of the velocity field in the homogeneous turbulence, Int. J. Heat Mass Transfer, 2012, Vol. 55, P. 2676–2683. 14. N. De Divitiis, Self-similarity in fully developed homogeneous isotropic turbulence using the Lyapunov analysis, Theor. Comput. Fluid Dyn., 2012, Vol. 26, P. 81–92. 15. L. Zeng, M. Oberlack, V.N. Grebenev, and S. Liao, Explicit series solution of closure model for the Karman-Howarth equation, J. ANZIAM, 2010, Vol. 52, No. 2, P. 179–202. 16. M. Oberlack and N. Peters, Closure of the two-point correlation equation as a basis for Reynolds stress models, Appl. Sci. Res., 1993, Vol. 51, Issues 1–2, P. 533–538. 17. V.N. Grebenev and M. Oberlack, A geometry of the correlation space and nonlocal degenerate parabolic equation from isotropic turbulence, ZAMM, 2012, Vol. 92, No. 3, P. 179–195. 18. I. Takashi, G. Toshiyuki, and K. Yukio, Study of high-Reynolds number isotropic turbulence by direct numerical simulation, Annual Rev. Fluid Mech., 2009, No. 41, P. 165–180. 19. V.A. Kostomakha, Experimental modeling of isotropic turbulence, Dinamika Sploshnoy Sredy, Inst. Hydrodynamics of the Siberian Division of the USSR Acad. Sci., Novosibirsk, 1985, No. 70, P. 92–104. 20. V.A. Kostomakha, Structure of Isotropic and Locally Isotropic Turbulence, Ph.D. Thesis, Novosibirsk, 1986. 21. M.D. Millionshchikov, Isotropic turbulence in a turbulent viscosity field, JETP Letters, 1969, Vol. 10, No. 8, P. 259–263. 22. M.D. Millionshchikov, Structure of turbulent-viscosity coefficient for an isotropic turbulence, JETP Letters, 1970, Vol. 11, No. 3, P. 125–127. 23. J.A. Domaradzki and G.L. Mellor, A simple turbulence closure hypothesis for the triple-velocity correlation functions in homogeneous isotropic turbulence revisited, J. Fluid Mech., 1984, Vol. 140, P. 45–61. 24. R.J. Driscoll and L.A. Kennedy, A model for the turbulent energy spectrum, Phys. Fluids, 1983, Vol. 26, No. 5, P. 1228–1233. 25. G.K. Batchelor and A.A. Townsend, Decay of isotropic turbulence in the initial period, Proc. Roy. Soc. A, 1948, Vol. 193, No. 1035, P. 539–558. 26. G.G. Chernykh, Z.L. Korobitsina, and V.A. Kostomakha, Numerical simulation of isotropic turbulence dynamics, Int. J. Comp. Fluid Dynamics, 1998, Vol. 10, No. 2, P. 173–182.