Инд. авторы: Fedotova Z.I., Khakimsyanov G.S.
Заглавие: Nonlinear–dispersive models on a rotating sphere:the new derivation and conservative laws
Библ. ссылка: Fedotova Z.I., Khakimsyanov G.S. Nonlinear–dispersive models on a rotating sphere:the new derivation and conservative laws // Справочник конференции: Математические и информационные технологии МИТ 2013 - 05.09.-09.09.2013, Врначка Бана, Србиjа, 10.09.-14.09.2013 Budva, Montenegro. - 2013. - Београд. - P.84-84.
Реферат: eng: Our purpose is to further improve and study of mathematical models used to simulate the long-wave processes in the ocean, which do not require a detailed description of the flow structure in the direction of depth of the liquid layer. In [1], nonlinear-dispersive (NLD) model on the sphere has been obtained with using the potential flow conditions. In [2], for the case of plane geometry it has been shown that the NLD-equations can be obtained under replacing the potentiality condition by the new condition, that is: the `` main'' part of horizontal velocity component is independent from `` vertical'' position, which is natural under the assumption of long-wave nature flow. In the present paper, a similar result was obtained in a spherical geometry taking into account the mobility of the bottom surface. In addition, the use of technology scaling basic hydrodynamic quantities and introducing the small parameters allowed to obtained a class of simplified NLD-equations for which the main characteristics of the original model (there is a balance of both kinetic and total energy) are preserved.
Издано: 2013
Физ. характеристика: с.84-84
Конференция: Название: Международная конференция «Математические и информационные технологии»
Аббревиатура: MIT-2013
Город: Врньячка Баньа, Будва
Страна: Сербия, Черногрия
Даты проведения: 2013-09-05 - 2013-09-14
Ссылка: http://conf.nsc.ru/MIT-2013
Цитирование: 1. Fedotova Z.I, Khakimzyanov G.S. Full nonlinear dispersion model of shallow water equations on a rotating sphere // J. Appl. Mech. Tech. Phys. 2011. Vol. 52, № 6. P. 865-876. (Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 52, No. 6, pp. 22–35. 2. Fedotova Z.I, Khakimzyanov G.S. An derivation analysis of nonlinear dispersive equations // Comp. technology. 2012. Vol. 17, № 5. P. 94-108.