Инд. авторы: Liseykina T.V., Mulser P., Murakami M.
Заглавие: Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction
Библ. ссылка: Liseykina T.V., Mulser P., Murakami M. Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction // Physics of Plasmas. - 2015. - Vol.22. - Iss. 3. - Art.033302. - ISSN 1070-664X. - EISSN 1089-7674.
Внешние системы: DOI: 10.1063/1.4914837; РИНЦ: 24016573; SCOPUS: 2-s2.0-84924674549; WoS: 000352163500084;
Реферат: eng: Among the various attempts to understand collisionless absorption of intense and superintense ultrashort laser pulses, a whole variety of models and hypotheses has been invented to describe the laser beam target interaction. In terms of basic physics, collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced by it in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target, therefore frequently addressed by the vague term “vacuum heating.” The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel like spectral hot electron distribution at the relativistic threshold, the minimum of absorption at Iλ2≅(0.3−1.2)×1021 Wcm−2μm2 in the plasma target with the electron density of neλ2∼1023cm−3μm2 , the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain, and strong coupling, beyond expectation, of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain Iλ2≅(1018−1020) Wcm−2μm2 , a scaling in vague accordance with current published estimates in the range Iλ2≅(0.14−3.5)×1021 Wcm−2μm2 , and again a distinct power increase beyond I=3.5×1021 Wcm−2μm2 . The low energy electrons penetrate normally to the target surface, the energetic electrons propagate in laser beam direction.
Издано: 2015
Физ. характеристика: 033302
Цитирование: 1. A. D. Piliya, Sov. Phys. Tech. Phys. 11, 609 (1966). 2. H.-J. Kull, Phys. Fluids 26, 1881 (1983). 10.1063/1.864367 3. W. L. Kruer and K. Estabrook, Phys. Fluids 28, 430 (1985). 10.1063/1.865171 4. F. Brunel, Phys. Rev. Lett. 59, 52 (1987); 10.1103/PhysRevLett.59.52 5. F. Brunel, Phys. Fluids 31, 2714 (1988). 10.1063/1.867001 6. P. Gibbon and A. R. Bell, Phys. Rev. Lett. 68, 1535 (1992). 10.1103/PhysRevLett.68.1535 7. P. Gibbon, Phys. Rev. Lett. 73, 664 (1994). 10.1103/PhysRevLett.73.664 8. L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Whei, Phys. Plasmas 8, 2925 (2001); 10.1063/1.1371956 9. Q. Dong and J. Zhang, Sci. China 46, 71 (2003); 10. D. Umstadter, J. Phys. D 36, R151 (2003); 10.1088/0022-3727/36/8/202 11. S. Kato, J. Plasma Fusion Res. 6, 658 (2004). 12. A. V. Getz and V. P. Krainov, J. Exp. Theor. Phys. 101, 80 (2005). 10.1134/1.2010664 13. W. Rozmus and V. T. Tikhonchuk, Phys. Rev. A 42, 7401 (1990); 10.1103/PhysRevA.42.7401 14. W. Rozmus, V. T. Tikhonchuk, and R. Cauble, Phys. Plasmas 3, 360 (1996). 10.1063/1.871861 15. T.-Y. B. Yang, W. L. Kruer, R. M. More, and A. B. Langdon, Phys. Plasmas 2, 3146 (1995); 10.1063/1.871146 16. T.-Y. B. Yang, W. L. Kruer, A. B. Langdon, and T. W. Johnston, Phys. Plasmas 3, 2702 (1996). 10.1063/1.871527 17. G. Ferrante, M. Zarcone, and S. A. Uryupin, Phys. Plasmas 9, 4560 (2002). 10.1063/1.1506697 18. S. Kato, B. Bhattacharyya, A. Nishiguchi, and K. Mima, Phys. Fluids B 5, 564 (1993). 10.1063/1.860542 19. H.-B. Cai, Phys. Plasmas 13, 063108 (2006). 10.1063/1.2206548 20. D. Bauer and P. Mulser, Phys. Plasmas 14, 023301 (2007). 10.1063/1.2435326 21. P. Mulser, S.-M. Weng, and T. Liseykina, Phys. Plasmas 19, 043301 (2012). 10.1063/1.3696034 22. M. Cerchez, R. Jung, J. Osterholz, T. Toncian, O. Willi, P. Mulser, and H. Ruhl, Phys. Rev. Lett. 100, 245001 (2008). 10.1103/PhysRevLett.100.245001 23. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992). 10.1103/PhysRevLett.69.1383 24. T. Baeva, S. Gordienko, A. P. L. Robinson, and P. A. Norreys, Phys. Plasmas 18, 056702 (2011). 10.1063/1.3566068 25. G. Malka and J. L. Miquel, Phys. Rev. Lett. 77, 75 (1996). 10.1103/PhysRevLett.77.75 26. P. McKenna, F. Lindau, O. Lundh, D. C. Carroll, R. J. Clarke, K. W. D. Ledingham, T. McCanny, D. Neely, A. P. L. Robinson, L. Robson, P. T. Simpson, C.-G. Wahlström, and M. Zepf, Plasma Phys. Controlled Fusion 49, B223 (2007). 10.1088/0741-3335/49/12B/S20 27. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, Phys. Plasmas 4, 447 (1997). 10.1063/1.872103 28. M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, Phys. Rev. Lett. 102, 045008 (2009). 10.1103/PhysRevLett.102.045008 29. P. Gibbon, A. A. Andreev, and K. Yu. Platonov, Plasma Phys. Controlled Fusion 54, 045001 (2012). 10.1088/0741-3335/54/4/045001 30. C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg, H. Chen, R. R. Freeman, A. Link, A. J. Mackinnon, A. G. MacPhee, P. K. Patel, M. Porkolab, R. B. Stephens, and L. D. Van Woerkom, Rev. Sci. Instrum. 79, 10E305 (2008). 10.1063/1.2964231 31. A. G. MacPhee, K. U. Akli, F. N. Beg, C. D. Chen, H. Chen, R. Clarke, D. S. Hey, R. R. Freeman, A. J. Kemp, M. H. Key, J. A. King, S. Le Pape, A. Link, T. Y. Ma, H. Nakamura, D. T. Offermann, V. M. Ovchinnikov, P. K. Patel, T. W. Phillips, R. B. Stephens, R. Town, Y. Y. Tsui, M. S. Wei, L. D. Van Woerkom, and A. J. Mackinnon, Rev. Sci. Instrum. 79, 10F302 (2008). 10.1063/1.2978199 32. T. Kluge, T. Cowan, A. Debus, U. Schramm, K. Zeil, and M. Bussmann, Phys. Rev. Lett. 107, 205003 (2011). 10.1103/PhysRevLett.107.205003 33. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, New York, 2013), Chap. 4, Sec. 2. 34. Y. Sentoku, V. Y. Bychenkov, K. Flippo, A. Maksimchuk, K. Mima, G. Mourou, Z. M. Sheng, and D. Umstadter, Appl. Phys. B 74, 207 (2002). 10.1007/s003400200796 35. V. S. Rastunkov and V. P. Krainov, Laser Phys. 15, 262 (2005). 36. D. F. Zaretsky, Ph. A. Korneev, S. V. Popruzhenko, and W. Becker, J. Phys. B 37, 4817 (2004). 10.1088/0953-4075/37/24/008 37. Ph. A. Korneev, S. V. Popruzhenko, D. F. Zaretsky, and W. Becker, Laser Phys. Lett. 2, 452 (2005). 10.1002/lapl.200510019 38. A. V. Sofronov and V. P. Krainov, J. Phys. B 37, L329 (2004). 10.1088/0953-4075/37/17/L04 39. A. Pukhov, Rep. Prog. Phys. 66, 47 (2003). 10.1088/0034-4885/66/1/202 40. P. Mulser, D. Bauer, and H. Ruhl, Phys. Rev. Lett. 101, 225002 (2008). 10.1103/PhysRevLett.101.225002 41. J. R. Davies, Plasma Phys. Controlled Fusion 51, 014006 (2009); 10.1088/0741-3335/51/1/014006 42. J. R. Davies, Nucl. Instrum. Methods Phys. Res. A 544, 61 (2005). 43. P. Gibbon, A. A. Andreev, E. Lefebvre, G. Bonnaud, H. Ruhl, J. Delettrez, and A. R. Bell, Phys. Plasmas 6, 947 (1999). 10.1063/1.873335 44. A. J. Kemp, Y. Sentoku, and M. Tabak, Phys. Rev. E 79, 066406 (2009). 10.1103/PhysRevE.79.066406 45. P. Mulser and D. Bauer, High Power Laser-Matter Interaction (Springer, Heidelberg, 2010), p. 356. 46. M. Sherlock, E. G. Hill, R. G. Evans, and S. J. Rose, Phys. Rev. Lett. 113, 255001 (2014). 10.1103/PhysRevLett.113.255001 47. S. M. Weng, P. Mulser, and Z. M. Sheng, Phys. Plasmas 19, 022705 (2012). 10.1063/1.3680638 48. J. Sanz, A. Debayle, and K. Mima, Phys. Rev. E. 85, 046411 (2012). 10.1103/PhysRevE.85.046411 49. H. Chen, S. C. Wilks, W. Kruer, P. Patel, and R. Shepherd, " Hot electron energy distributions from ultra-intense laser solid interactions," Phys. Plasmas 16, 020705 (2009). 10.1063/1.3080197 50. N. Naumova, T. Schlegel, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, Phys. Rev. Lett. 102, 025002 (2009). 10.1103/PhysRevLett.102.025002 51. M. Tamburini, T. V. Liseykina, F. Pegoraro, and A. Macchi, Phys. Rev. E 85, 016407 (2012); 10.1103/PhysRevE.85.016407 52. M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, New J. Phys. 12, 123005 (2010). 10.1088/1367-2630/12/12/123005 53. L. L. Ji, A. Pukhov, I. Yu. Kostyukov, B. F. Shen, and K. Akli, Phys. Rev. Lett. 112, 145003 (2014). 10.1103/PhysRevLett.112.145003 54. S. C. Wilks and W. L. Kruer, IEEE J. Quantum Electron. 33, 1954 (1997). 10.1109/3.641310