Инд. авторы: | Чеховской И.С. |
Заглавие: | Использование аппроксимации паде для решения систем нелинейных уравнений шредингера с помощью метода расщепления по физическим процессам |
Библ. ссылка: | Чеховской И.С. Использование аппроксимации паде для решения систем нелинейных уравнений шредингера с помощью метода расщепления по физическим процессам // Вычислительные технологии. - 2015. - Т.20. - № 3. - С.99-108. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 23757842; |
Реферат: | eng: Purpose. This paper presents a new modification of the well-known split-step Fourier method. The development of telecommunication technologies caused the necessity to solve numerically new types of systems of coupled nonlinear Schrodinger equations. For devices with strong coupling between the modes of light, such as multicore optical fibers, there is a need to consider the linear coupling between the various modes. Presented numerical algorithm can solve the NSE system, taking into account such linear coupling. Methodology. Pade approximation for the numerical calculation of the matrix exponential was used. The matrix exponential appears in the generalization of the split-step Fourier method to the system of coupled NSE. Pade approximation formula uses the approximation of exponential by rational functions with polynomials of degree 6 in the numerator and the denominator and having the 13th-order accuracy. Findings. The new modification of split-step Fourier method and its parallel implementation based on the Intel MKL library are represented. In this paper we demonstrate the high accuracy of the proposed numerical algorithm on the solution of scalar NSE in the form of fundamental soliton. The possibility of efficient parallelization of the algorithm for computing systems with shared memory was demonstrated by the figures with the acceleration of the algorithm on different numbers of threads. Originality/value. The proposed new numerical algorithm can effectively solve the problem of propagation of light pulses in multi-core and multi-mode optical fibers. The possibility of creating its parallel implementation allows using this algorithm on a large spectrum of computing systems with shared memory. rus: Для метода Фурье расщепления по физическим процессам разработана модификация на основе аппроксимации Паде матричной экспоненты. Эта модификация расширяет возможность применения метода Фурье на системы связанных нелинейных уравнений Шредингера, описывающих распространение световых импульсов в многоядерных и многомодовых оптических волокнах. Предложена параллельная реализация данного численного алгоритма на вычислительных системах с общей памятью. |
Ключевые слова: | multi-core fibers; Nonlinear Schrodinger equation; Pade approximation; Split-step Fourier method; нелинейная волоконная оптика; многомодовые оптические волокна; многоядерные оптические волокна; нелинейное уравнение Шредингера; аппроксимация Паде; метод Фурье расщепления по физическим процессам; Nonlinear fiber optics; Multi-mode fibers; |
Издано: | 2015 |
Физ. характеристика: | с.99-108 |
Цитирование: | 1. Kivshar, Y.S., Agrawal, G.P. Optical solitons: from fibers to photonic crystals. 5th Ed. San Diego: Academic Press; 2003: 540. 2. Agrawal, G. Applications of Nonlinear Fiber Optics. ] Burlington, Ma : Academic Press; 2008: 508. 3. Richardson, D.J., Fini, J.M., Nelson, L.E. Space-division multiplexing in optical fibres. Nature Photonics. 2013; 7(5):354-362. 4. Mumtaz, S., Essiambre, R., Agrawal, G.P. Nonlinear propagation in multimode and multicore fibers: Generalization of the manakov equations. Journal of Lightwave Technology. 2013; 31(3):398-406. 5. Wang, T. Maximum norm error bound of a linearized difference scheme for a coupled nonlinear schrodinger equations. Journal of Computational and Applied Mathematics. 2011; 235(14):4237-4250. 6. Wang, D., Xiao, A., Yang, W. A linearly implicit conservative difference scheme for the space fractional coupled nonlinear schrodinger equations. Journal of Computational Physics. 2014; (272):644-655. 7. Ma, Y., Kong, L., Hong, J., Cao, Y. High-order compact splitting multisymplectic method for the coupled nonlinear schrodinger equations. Computers & Mathematics with Applications. 2011; 61(2):319-333. 8. Dehghan, M., Taleei, A. A chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear schrodinger equations. Computer Physics Communications. 2011; 182(12):2519-2529. 9. Chen, Y., Zhu, H., Song, S. Multi-symplectic splitting method for the coupled nonlinear schrodinger equation. Computer Physics Communications. 2010; 181(7):1231-1241. 10. Taha, T.R., Xu, X. Parallel split-step fourier methods for the coupled nonlinear schrodinger type equations. Journal Of Supercomputing. 2005; 32(1):5-23. 11. Wang, S., Wang, T., Zhang, L. Numerical computations for n-coupled nonlinear schrodinger equations by split step spectral methods. Applied Mathematics and Computation. 2013;. (222):438-452. 12. Baker, G., Graves-Morris, P. Padé approximants. Part I: Basic theory. Part II: Extensions and applications. Encyclopedia of Mathematics and Its Applications. Addison-Wesley, Reading. 1981; (13-14). 13. Zhang, L., Rector, J.W., Hoversten, G.M., Fomel, S. Split-step complex pade-fourier depth migration. Geophysical Journal International. 2007; 171(3):1308-1313. 14. Smadi, M., Bahloul, D. A compact split step pade scheme for higher-order nonlinear schrodinger equation (hnls) with power law nonlinearity and fourth order dispersion. Computer Physics Communications. 2011; 182(2):366-371. 15. Xu, Z., He, J., Han, H. Semi-implicit operator splitting pade method for higher-order nonlinear schrodinger equations. Applied Mathematics and Computation. 2006; 179(2):596-605. 16. Bhatt, H.P., Khaliq, A.Q. Higher order exponential time differencing scheme for system of coupled nonlinear schrodinger equations. Applied Mathematics and Computation. 2014; (228):271-291. 17. Agrawal, G. Nonlinear Fibre Optics. 4th Ed. San Diego: Academic. Press; 2013. 18. Turitsyn, S.K., Bale, B.G., Fedoruk, M.P. Dispersion-managed solitons in fibre systems and lasers. Physics Reports. 2012; 521(4):135-203. 19. Moler, C., Van Loan, C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review. 2003; 45(1):3-49. 20. Higham, N.J. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on Matrix Analysis and Applications. 2005; 26(4):1179-1193. 21. Rubenchik, A.M., Chekhovskoy, I.S., Fedoruk, M.P., Shtyrina, O.V., Turitsyn, S.K. Nonlinear pulse combining and pulse compression in multi-core fibers. Optics Letters. 2015; 40(5):721-724. |