Инд. авторы: Kokshenev V., Suschenko S.
Заглавие: Tcp reno modeling through a discrete-time markov chain
Библ. ссылка: Kokshenev V., Suschenko S. Tcp reno modeling through a discrete-time markov chain // Труды 17-ой Международной конференции "Распределенные компьютерные и коммуникационные сети: управление, вычисление, связь" (DCCN-13, 7-10 октября, Москва), 2013 / Ответственный за выпуск - Д.В.Козырев. - 2013. - Москва. - P.74-80. - ISBN: 978-5-94836-366-0.
Внешние системы: РИНЦ: 21765485;
Реферат: eng: An analytical model of the Reno congestion control procedure for Transmission Control Protocol is presented, and its theoretical predictions are compared with real TCP traces and some well-known results [1]. The model is based on Discrete-Time Markov Chain, and it covers slow start, congestion avoidance, fast recovery, fast retransmit, timeouts with exponential backoff, cumulative and selective acknowledgements features of TCP. The model provides a way to estimate Reno TCP performance as a function of round trip time and loss rate for bulk transfer TCP flow.
Издано: 2013
Физ. характеристика: с.74-80
Конференция: Название: 17-ая Международная конференция "Распределенные компьютерные и коммуникационные сети: управление, вычисление, связь"
Аббревиатура: DCCN-13
Город: Москва
Страна: Россия
Даты проведения: 2013-10-07 - 2013-10-10
Цитирование: 1. Padhey, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A simple Model and Its Empirical Validation, UMASS CMPSI Tech Report TR98-008, Feb. 1998 2. Postel, J. :Transmission Control Protocol, Internet RFC 0793/STD 0007, September 1981. 3. Kevin R. Fall, W. Richard Stevens: TCP/IP Illustrated, Volume 1: The Protocols (2nd Edition), Addison-Wesley Professional Computing Series, 2012. 4. Van Jacobson, Michael J. Karels: Congestion avoidance and control, November 1988, SIGCOMM ‘88. 5. Allman, M., Paxson, V., Blanton, E.: TCP Congestion Control, Internet RFC 5681, September 2009. 6. Lakshman, T.V., Madhow, U.: The performance of TCP/IP for networks with high bandwidth-delay products and random loss. ACM/IEEE Trans. on Networking 5, 336-350 (1997). 7. Kumar A.: Comparative Performance Analysis of versions of TCP in a Local Network with a Lossy Link. ACM/IEEE Trans. of Networking 6, 485-498 (1998). 8. Nimbe L. Ewald, Andrew H. Kemp: Analytical Model of TCP NewReno through a CTMC. J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 183-196, 2009. 9. Padhey, J., Firoiu, V., Towsley, D.: A stochastic model of TCP Reno congestion avoidance and control, Tech. Rep. UMASS-CS-TR-1999-02. 10. Wierman, A., Osogami, T., Olsen, J.: A Unified Framework for Modeling TCP-Vegas, TCP-SACK, and TCP-Reno. Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems (MASCOTS'03). 1526-7539/03. 11. Casetti, C., Meo, M.: An analytical framework for the performance evaluation of TCP Reno connections. Computer Networks, 37: 669-682, 2001. 12. M. Mathis, J. Mahdavi, S. Floyd, A. Romanow: TCP Selective Acknowledgement Options, Internet RFC 2018, Oct. 1996. 13. S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky: An Extension to the Selective Acknowledgement (SACK) Option for TCP, Internet RFC 2883, July 2000. 14. Karn, P., Partridge, C.: Improving Round-Trip Time Estimates in Reliable Transport Protocols, SIGCOMM 87. 15. K. Fall, S. Floyd: Simulation-based comparison of Tahoe, Reno, and SACK TCP. Computer Communication Review, 26(3), July 1996. 16. V. Paxson: Automated packet trace analysis of TCP implementations. In proceedings of SIGCOMM'97, 1997.