Инд. авторы: Цыденов Б.О., Старченко А.В.
Заглавие: Применение двухпараметрической к - ю-модели турбулентности для исследования явления термобара
Библ. ссылка: Цыденов Б.О., Старченко А.В. Применение двухпараметрической к - ю-модели турбулентности для исследования явления термобара // Вестник Томского государственного университета. Математика и механика. - 2014. - № 5. - С.104-113. - ISSN 1998-8621. - EISSN 2311-2255.
Внешние системы: РИНЦ: 22548343;
Реферат: rus: При математическом моделировании явления термобара впервые применена двухпараметрическая дифференциальная k-ю-модель для расчёта значений коэффициентов турбулентной вязкости и диффузии. Проведен сравнительный анализ алгебраической модели Холланда П.Р. и др. и двухпарамет-рической дифференциальной k-ю-модели Уилкокса на примере воспроизведения термобара в канадском озере Камлупс.
eng: In this paper, the phenomenon of the thermal bar in Kamloops Lake (Canada) is studied with a nonhydrostatic mathematical model. A thermal bar is a narrow zone in a lake in temperate latitudes where maximum-density waters sink from the surface to the bottom. Two different turbulence models are compared: the algebraic model of Holland P. R. et al. [1] and the two-equation k-ю model of Wilcox D.C. [2]. The two-parameter model of turbulence developed by D.C. Wilcox consists of equations for turbulence kinetic energy (k) and specific dissipation rate (ro).The mathematical model which includes the Coriolis force due to the Earth''s rotation, is written in the Boussinesq approximation with the continuity, momentum, energy, and salinity equations. The Chen-Millero equation [8], adopted by UNESCO, was taken as the equation of state. The formulated problem is solved by the finite volume method. The numerical algorithm for finding the flow and temperature fields is based on the Crank-Nicholson difference scheme. The convective terms in the equations are approximated by a second-order upstream QUICK scheme [10]. To calculate the velocity and pressure fields, the SIMPLED procedure for buoyant flows [11], which is a modification of the well-known Patankar''s SIMPLE method [9], has been developed. The systems of grid equations at each time step are solved by the under-relaxation method or N.I. Buleev''s explicit method [12]. The turbulence models were applied to predict the evolution of the spring thermal bar in Kamloops Lake. The numerical experiments have shown that the application of the k-ю turbulence model leads to new effects in the thermal bar evolution.
Ключевые слова: численный эксперимент; термобар; Kamloops Lake; numerical experiment; thermal bar; Boussinesq approximation; temperature of maximum density; математическое моделирование; модель турбулентности; озеро Камлупс;
Издано: 2014
Физ. характеристика: с.104-113
Цитирование: 1. Овчинникова Т.Э., Бочаров О.Б. Сезонное влияние вод притока на водообмен в глубоком озере в условиях больших уклонов дна // Вычисл. технологии. 2007. Т. 12. № 6. C. 59-72. 2. Killworth P.D., СагтасЛ E.C., Weiss R.F., Matear R. Modeling deep-water renewal in Lake Baikal // Limnol. Oceanogr. 1996. V. 41. No. 7. P. 1521-1538. 3. Mellor G.L., Yamada Т. Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. Space Phys. 1982. V. 20. No. 4. P. 851-875. 4. Rodi W. Examples of calculation methods for flow and mixing in stratified fluids // J. Geophys. Res. 1987. V. 92. No. C5. P. 5305-5328. 5. Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA Journal. 1988. V. 26. No. 11. P. 1299-1310. 6. Umlauf L., Burchard H., Hutter K. Extending the Л-ю turbulence model towards oceanic applications // Ocean Modelling. 2003. V. 5. P. 195-218. 7. Holland P.R., Kay A, Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Sys. 2003. V. 43. No. 1-2. P. 61-81. 8. Chen C.T., Millero F.G. Precise thermodynamic properties for natural waters covering only limnologies range // Limnol. Oceanogr. 1986. V. 31. No. 3. P. 657-662. 9. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости: пер. с англ. / под ред. В.Д. Виоленского. М.: Энергоатомиздат, 1984. 152 с. 10. Leonard B. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Comput. Meth. Appl. Mech. Eng. 1979. V. 19. No. 1. P. 59-98. 11. Цыденов Б.О., Старченко А.В. Численная модель взаимодействия систем «река - озеро» на примере весеннего термобара в озере Камлупс // Вестник Томского государственного университета. Математика и механика. 2013. № 5(25). С. 102-115. 12. Булеев Н.И. Метод неполной факторизации для решения двумерных и трехмерных разностных уравнений типа диффузии // Журн. вычисл. матем. и матем. физ. 1970. Т. 10. № 4. С. 1042-1044. 13. Цыденов Б.О., Старченко А.В. Численное моделирование эффекта термобара в озере Байкал в период весенне-летнего прогревания // Вестник Томского государственного университета. Математика и механика. 2011. № 1(13). С. 120-130. 14. Carmack E.C., Gray C.B.J., Pharo C.H., Daley R.J. Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia // Limnol. Oceanogr. 1979. V. 24. No. 4. P. 634-644.