Инд. авторы: | Alekseenko O.P., Potapenko D.I., Cherny S.G., Esipov D.V., Kuranakov D.S., Lapin V.N. |
Заглавие: | 3-d modeling of fracture initiation from perforated non-cemented wellbore |
Библ. ссылка: | Alekseenko O.P., Potapenko D.I., Cherny S.G., Esipov D.V., Kuranakov D.S., Lapin V.N. 3-d modeling of fracture initiation from perforated non-cemented wellbore // Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference 2012: SPE Hydraulic Fracturing Technology Conference 2012 / sponsors: Schlumberger, Coiled Tubing and Fracturing Energy Services, Inc., Baker Hughes, Dorf Ketal, Mission Well Services. - 2012. - The Woodlands, TX. - P.96-111. |
Внешние системы: | DOI: 10.2118/151585-MS; РИНЦ: 17987140; SCOPUS: 2-s2.0-84861599005; |
Реферат: | eng: A 3D numerical model of fracture initiation from a perforated wellbore in linear elastic rock is developed, which allows one to determine the fracture initiation pressure (FIP) and the location and direction of an initial rupture. The model assumes that the fracture initiates at the point where the local maximum tensile stress exceeds the rock tensile strength. The 3D boundary element method is used for stress analysis. The model is aiming at predicting the location of initial fractures and the difference in FIP between different perforation intervals in arbitrarily oriented non-cemented wellbores. There are many practical applications where this knowledge is required, but of particular interest for this research is the employment of differently oriented perforations for creating heterogeneity of FIP between wellbore intervals in multistage fracturing treatment. This can enable stimulation of these intervals in a sequential mode and significantly simplify current treatment diversion and completion practices. Comprehensive analysis revealed that the main parameter that can be used for controlling FIP during multistage fracturing treatment is the angle between the direction of the perforation channel and the preferred fracture plane. The model allows obtaining the range of the angles that is the most suitable for designing and implementation of diversion between the perforated wellbore intervals. The influence of geometrical parameters of perforation (e.g. length, diameter and shape) on FIP is substantially less. Addtionally we found that against all expectations increase of perforation diameter can result in higher FIP. It was also discovered that the influence of the intermediate in-situ stress on FIP is comparable with the effect of perforation misalignment especially in the situation of horizontal wellbore and properly aligned perforations. Based on the model developed, an approximate approach to the evaluation of the impact of wellbore cementation on fracture initiation was suggested. It was discovered that taking into account the state of stress within the cement prior to well pressurization can result in both an increase and reduction of FIP depending on the parameters of perforating as well as wellbore orientation. The presented model is the necessary step toward predictable and controllable fracture initiation, which is vital for multistage fracturing treatment diversion. Copyright 2012, Society of Petroleum Engineers. |
Ключевые слова: | Oriented perforation; Perforation channels; Sequential mode; Well perforation; Three dimensional; Stress analysis; Perforating; Oil field equipment; Hydraulic fracturing; Horizontal wells; Fracture; Boundary element method; Wellbore orientation; Wellbore; State of stress; Fracture initiation; Fracture initiation pressures; Fracture plane; Fracturing treatments; Geometrical parameters; Insitu stress; Linear elastic; Local maximum; Main parameters; 3-d modeling; 3D numerical model; Comprehensive analysis; Non-cemented; Current treatments; |
Издано: | 2012 |
Физ. характеристика: | с.96-111 |
Конференция: | Название: SPE Hydraulic Fracturing Technology Conference 2012 Даты проведения: 2012-02-06 - 2012-02-08 |