Инд. авторы: | Гусев О.И. |
Заглавие: | Алгоритм расчёта поверхностных волн над подвижным дном в рамках плановой нелинейно-дисперсионной модели |
Библ. ссылка: | Гусев О.И. Алгоритм расчёта поверхностных волн над подвижным дном в рамках плановой нелинейно-дисперсионной модели // Вычислительные технологии. - 2014. - Т.19. - № -6. - С.19-41. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 23203574; РИНЦ: 22791287; |
Реферат: | rus: Разработан численный алгоритм, основанный на разбиении на эллиптическую и гиперболическую части плановой нелинейно-дисперсионной модели на подвижном дне. Полученные решения сравнивались с расчётами по модели мелкой воды и экспериментальными данными на задачах о генерации волн оползнем и их распространении. eng: The influence of the effects due to frequency dispersion on tsunami wave patterns is investigated. The numerical algorithm developed is based on the partitioning of the fully nonlinear dispersive shallow water equations with a movable bottom into elliptic and hyperbolic subproblems, which are solved alternately at each time step. At that, equations of the hyperbolic subproblem differ from the classic shallow water system in the right side only. Therefore, well-examined finite-difference schemas are implemented for both subproblems. In this paper, we describe in detail the integro-interpolation method for the elliptic subproblem. The hyperbolic subproblem is solved by the explicit schema of predictorcorrector type. For open bounds of the computational region Zommerfeld type conditions are proposed for both subproblems. Obtained numerical solutions are compared with computations based on shallow water model and experimental data. Regarding the problem of disintegration of initial disturbance above the flat bottom, it is checked out that as the source width is decreased so dispersion is significantly increased. During the simulations of the landslide-generated tsunamis, we detect the loss of adequacy of the model when the ratio of the landslide length to its depth is small. In other cases the model reproduce wave pattern better than the classic shallow water model. In addition, significant dependence of the surface wave amplitudes versus the landslide width is demonstrated. Good agreement of numerical solutions with experimental data obtained in the problem of interaction of solitary wave with the conical island shows the applicability of the model in complex multi linked domains. |
Ключевые слова: | цунами; уравнения мелкой воды; нелинейно-дисперсионные уравнения; численное моделирование; конечно-разностная схема; underwater landslide; surface waves; Tsunami; Shallow water equations; поверхностные волны; подводный оползень; finite-difference schema; numerical simulation; Nonlinear dispersive equations; |
Издано: | 2014 |
Физ. характеристика: | с.19-41 |
Цитирование: | 1. Tappin D.R., Watts P., Grilli S.T. The Papua New Guinea tsunami of 17 July 1998: Anatomy of a catastrophic event // Natural Hazards Earth Syst. Sci. 2008. Vol. 8. P. 243-266. 2. Ward S.N., Day S. The 1963 landslide and flood at vaiont reservoir Italy. A tsunami ball simulation // Ital. J. Geosci. 2011. Vol. 130, No. 1. P. 16-26. 3. Диденкулова И.И., Пелиновский Е.Н. Цунамиподобные явления в российских внутренних водоёмах // Фундамент. и прикл. гидрофизика. 2009. № 3(5). С. 52-96. 4. Lynett P.J., Liu P.L.-F. A numerical study of the run-up generated by three-dimensional landslides // J. Geophys. Res. 2005. Vol. 110. C03006, doi:10.1029/2004JC002443. 5. Елецкий С.В., Майоров Ю.Б., Максимов В.В. и др. Моделирование генерации поверхностных волн перемещением фрагмента дна по береговому склону // Совместный выпуск журн. “Вычисл. технологии” и “Вестник КазНУ им. аль-Фараби”. 2004. Т. 9, ч. II. С. 194-206. 6. Grilli S.T., Watts P. Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses // J. of Waterway Port Coastal and Ocean Eng. 2005. Vol. 131, No. 6. P. 283-297. 7. Enet F., Grilli S.T. Experimental study of tsunami generation by three-dimensional rigid underwater landslides // Ibid. 2007. Vol. 133, No. 6. P. 442-454. 8. Watts P., Grilli S.T. Modeling of waves generated by a moving submerged body. Applications to underwater landslides // Eng. Anal. with Boundary Elements. 1999. Vol. 23. P. 645-656. 9. Хакимзянов Г.С., Шокин Ю.И., Барахнин В.Б., Шокина Н.Ю. Численное моделирование течений жидкости с поверхностными волнами. Новосибирск: Изд-во СО РАН, 2001. 394 с. 10. Green A.E., Naghdi P.M. A derivation of equations for wave propagation in water of variable depth // J. Fluid Mech. 1976. Vol. 78, pt 2. P. 237-246. 11. Железняк М.И., Пелиновский Е.Н. Физико-математические модели наката цунами на берег // Накат цунами на берег. Горький: ИПФ АН СССР, 1985. С. 8-33. 12. Базденков С.В., Морозов Н.Н., Погуце О.П. Дисперсионные эффекты в двумерной гидродинамике // Докл. АН СССР. 1987. Т. 293, № 4. С. 818-822. 13. Алешков Ю.З. Течения и волны в океане. СПб.: Изд-во С.-Петербургского ун-та, 1996. 226 с. 14. Lynett P.J., Liu P.L.-F. A numerical study of submarine-landslide-generated waves and run-up // Proc. Royal Soc. of London. A. 2002. Vol. 458. P. 2885-2910. 15. Peregrine D.H. Long waves on a beach // J. Fluid Mech. 1967. Vol. 27, pt 4. P. 815-827. 16. Дорфман А.А., Яговдик Г.И. Уравнения приближённой нелинейно-дисперсионной теории длинных гравитационных волн, возбуждаемых перемещениями дна и распространяющихся в бассейне переменной глубины // Численные методы механики сплошной среды: Сб. науч. тр. / АН СССР. Сиб. отд-ние. ВЦ, ИТПМ. 1977. Т. 8, № 1. С. 36-48. 17. Шокин Ю.И., Чубаров Л.Б. О подходах к численному моделированию оползневого механизма генерации волн цунами // Вычисл. технологии. 2006. Т. 11. Спец. выпуск. Ч. 2. С. 100-111. 18. Fedotova Z.I., Pashkova V.Yu. Methods of construction and the analysis of difference schemes for nonlinear dispersive models of wave hydrodynamics // Rus. J. Numer. Anal. Math. Modelling. 1997. Vol. 12, No. 2. P. 127-149. 19. Wei G., Kirby J.T., Grilli S.T., Subramanya R. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves // J. Fluid Mech. 1995. Vol. 294. P. 71-92. 20. Гусев О.И. Об алгоритме расчёта поверхностных волн в рамках нелинейно-дисперсионной модели на подвижном дне // Вычисл. технологии. 2012. Т. 17, № 5. С. 46-64. 21. Гусев О.И., Шокина Н.Ю., Кутергин В.А., Хакимзянов Г.С. Моделирование поверхностных волн, генерируемых подводным оползнем в водохранилище // Там же. 2013. Т. 18, № 5. С. 74-90. 22. Шокин Ю.И., Бейзель С.А., Гусев О.И. и др. Численное исследование дисперсионных волн, возникающих при движении подводного оползня // Вестник ЮУрГУ. 2014. Т. 7, № 1. С. 121-133. 23. Шокин Ю.И., Хакимзянов Г.С. Схема предиктор-корректор, сохраняющая гидравлический скачок // Вычисл. технологии. 2006. Т. 11. Спец. выпуск. Ч. 2. С. 92-99. 24. Briggs M.J., Synolakis C.E., Harkins G.S., Green D.R. Laboratory experiments of tsunami runup on circular island // Pure and Appl. Geoph. 1995. Vol. 144, No. 3/4. P. 569-593. 25. Федотова З.И., Хакимзянов Г.С. Анализ условий вывода НЛД-уравнений // Вычисл. технологии. 2012. Т. 17, № 5. С. 94-108. 26. Barakhnin V.B., Khakimzyanov G.S. On the algorithm for one nonlinear dispersive shallow-water model // Rus. J. Numer. Anal. Math. Modelling. 1997. Vol. 12, No. 4. P. 293-317. 27. Kirby J.T., Shi F., Tehranirad B. et al. Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects // Ocean Modelling. 2013. Vol. 62. P. 39-55. 28. Бейзель С.А., Хакимзянов Г.С. Численное моделирование поверхностных волн, возникающих при движении подводного оползня по неровному дну // Вычисл. технологии. 2010. Т. 15, № 1. С. 105-119. 29. Beisel S.A., Chubarov L.B., Khakimzyanov G.S. Simulation of surface waves generated by an underwater landslide moving over an uneven slope // Rus. J. of Numer. Anal. Math. Modelling. 2011. Vol. 26, No. 1. P. 17-38. 30. Chubarov L.B., Fedotova Z.I., Shkuropatskii D.A. Investigation of computational models of long surface waves in the problem of interaction of a solitary wave with a conic island // Ibid. 1998. Vol. 13, No. 4. P. 289-306. 31. Chubarov L.B., Fedotova Z.I. An Effective high accuracy method for tsunami runup numerical modeling // Submarine Landslides and Tsunamis: Proc. of the NATO Advanced Research Workshop on Underwater Ground Failures on Tsunami Generation. Modeling, Risk and Mitigation. Istanbul, Turkey. Dordrecht: Kluwer, 2003. P. 203-216. 32. Liu P.L.-F., Cho Y.-S., Briggs M.J. et al. Runup of solitary waves on a circular island // J. Fluid Mech. 1995. Vol. 302. P. 259-285. |