Инд. авторы: Pinchukov V.I.
Заглавие: A monotone nonlocal cubic spline
Библ. ссылка: Pinchukov V.I. A monotone nonlocal cubic spline // Computational Mathematics and Mathematical Physics. - 2001. - Vol.41. - Iss. 2. - P.180-186. - ISSN 0965-5425. - EISSN 1555-6662.
Внешние системы: РИНЦ: 13378606; SCOPUS: 2-s2.0-33745660290;
Реферат: eng: A modification of the cubic spline is suggested, based on modern adaptive approximation algorithms widely used in constructing TVD schemes. The case of an arbitrary distribution of interpolation vertexes is considered. The monotonicity of the spline is proved for monotonie input data. For smooth functions without extrema, the modified spline transforms into the original spline as the distance between the interpolation knots decreases. Numerical examples of solutions to test problems are given. Copyright © 2001 by 'Nauka/Interperiodica'.
Издано: 2001
Физ. характеристика: с.180-186