Инд. авторы: Новиков E.А., Голушко М.И.
Заглавие: (m, 3)-метод третьего порядка для жестких неавтономных систем ОДУ
Библ. ссылка: Новиков E.А., Голушко М.И. (m, 3)-метод третьего порядка для жестких неавтономных систем ОДУ // Вычислительные технологии. - 1998. - Т.3. - № 3. - С.48-54. - ISSN 1560-7534. - EISSN 2313-691X.
Внешние системы: РИНЦ: 13009815;
Реферат: eng: The L-stable (m, 3)-method of the third order for solving the Cauchy problem for stiff nonautonomous systems of ordinary differential equations has been constructed. The results of the calculations, which confirm efficiency of the algorithm of integration, have been adduced.
Издано: 1998
Физ. характеристика: с.48-54
Цитирование: 1. ROSENBROCK H. H. Some general implicit processes for the numerical solution of differential equations. Computer, №5, 1963, 329-330. 2. Современные численные методы решения обыкновенных дифференциальных уравнений. Под ред. Дж. Холла и Дж. Уатта. Мир, М., 1979. 3. НОВИКОВ Е. А., ШИТОВ Ю. А., ШОКИН Ю. И. Одношаговые безытерационные методы решения жестких систем. Докл. АН СССР, 301, №6, 1988, 1310-1314. 4. ДЕМИДОВ Г. В., ЮМАТОВА JI.A. Исследование некоторых аппроксимаций в связи с -устойчивостью полунеявных методов. В "Численные методы механики сплошной среды". ИТПМ СО АН СССР, Новосибирск, 8, №3, 1977, 68-79. 5. ДЕМИДОВ Г. В., НОВИКОВ Е. А. Оценка ошибки одношаговых методов интегрирования обыкновенных дифференциальных уравнений. Там же, 16, №1, 1985, 27-39. 6. ENRIGHT W. Н., Hull Т.Е. Comparing numerical methods for the solutions of stiff systems ODE`s. BIT, No. 15, 1975, 10-48. 7. BYRNE G.D., HlNDMARSH A. C. Stiff ODE solvers: a review of current and comming attractions. J. Comput. Phys., No. 70, 1986, 1-62.