Инд. авторы: Grigoriev Y.N., Ershov I.V.
Заглавие: Energy estimate of the critical Reynolds numbers in a compressible couette flow. effect of bulk viscosity
Библ. ссылка: Grigoriev Y.N., Ershov I.V. Energy estimate of the critical Reynolds numbers in a compressible couette flow. effect of bulk viscosity // Journal of Applied Mechanics and Technical Physics. - 2010. - Vol.51. - Iss. 5. - P.669-675. - ISSN 0021-8944. - EISSN 1573-8620.
Внешние системы: РИНЦ: 16805380; SCOPUS: 2-s2.0-78149379492; WoS: 000284602600007;
Реферат: eng: A variational problem of determining the critical Reynolds number of the laminar-turbulent transition is numerically solved within the framework of the nonlinear energy theory of stability of compressible flows. Stability of various modes in the Couette flow of a compressible gas is estimated by the method of collocations. It is demonstrated that the minimum critical Reynolds numbers in the range of the ratio of the bulk viscosity ηb to the shear viscosity η, which is realistic for diatomic gases, are reached for modes of streamwise disturbances. The critical Reynolds numbers increase as the bulk viscosity is increased in the interval ηb = 0-2η, with the maximum increase in the limit being approximately 30%. © 2010 MAIK/Nauka.
Ключевые слова: Hydrodynamic stability; energy theory; Bulk viscosity; Critical Reynolds number; Compressible gas;
Издано: 2010
Физ. характеристика: с.669-675
Цитирование: 1. Yu. N. Grigors`ev, "On the energy theory of stability of compressible flows", Vychisl. Tekhnol., 11, Special issue, 55-62 (2006). 2. D. D. Joseph, Stability of Fluid Motions, Springer-Verlag, Berlin-Heidelberg-New York (1976). 3. Yu. N. Grigors`ev and I. V. Ershov, "Effect of bulk viscosity on Kelvin-Helmholtz instability", J. Appl. Mech. Tech. Phys., 49, No. 3, 407-416 (2008). 4. L. M. Mack, "Boundary layer stability theory", Jet Propulsion Lab. Report No. 900-277, Rev. A, Pasadena, California (1969). 5. S. A. Gaponov and A. A. Maslov, Development of Disturbances in Compressible Flows [in Russian], Nauka, Novosibirsk (1980). 6. M. A. Gols`dshtik and V. N. Shtern, Hydrodynamic Stability and Turbulence [in Russian], Nauka, Novosibirsk (1977). 7. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics: Springer Series in Computational Physics, Springer-Verlag, Berlin (1988). 8. L. N. Trefethen, Spectral Methods in Matlab, Soc. for Industr. and Appl. Math., Philadelphia (2000). 9. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York (1961). 10. C. B. Moler and G. W. Stewart, "An algorithm for generalized matrix eigenvalue problems", SIAM J. Numer. Anal., 10, No. 2, 241-256 (1973). 11. D. D. Joseph, "Nonlinear stability of the Boussinesq equations by the method of energy", Arch. Rational Mech. Anal., 22, No. 3, 163-184 (1966). 12. D. D. Joseph and S. Carmi, "Stability of Poiseuille flow in pipes, annuli and channels", Quart. Appl. Math., 26, No. 4, 575-599 (1969).