Инд. авторы: Shokin Y.I., Prokopyeva L.Y., Fedoruk M.P., Lebedev A.S., Chubarov D.L.
Заглавие: Parallel FVTD for solving maxwell equations in dielectric-metal composite media
Библ. ссылка: Shokin Y.I., Prokopyeva L.Y., Fedoruk M.P., Lebedev A.S., Chubarov D.L. Parallel FVTD for solving maxwell equations in dielectric-metal composite media // Notes on Numerical Fluid Mechanics and Multidisciplinary Design. - 2011. - Т.115. - С.43-49. - ISSN 1612-2909.
Внешние системы: DOI: 10.1007/978-3-642-17770-5_4; РИНЦ: 16685195; SCOPUS: 2-s2.0-79551527624; WoS: 000302647000004;
Реферат: eng: Parallel implementation of finite volume time domain method (FVTD) described in this paper is being developed for numerical simulations in the optics of nano-structured metal-dielectric composites. The problem is complicated by the dispersive behaviour of the dielectric function in metals, which is introduced into the system of equations through the time-convoluted Debye model. Another difficulty is the extreme contrast between the dielectric functions of host media and metallic elements. Thus, unstructured grids are used to fit the boundaries of elementary materials within the composite media, and also a special technique for space gradients calculation is employed. The parallel code is developed using the MPI library for inter-processor communications and was evaluated on analytical models of plane wave scattering from a metal cylinder with uniform or gradient optical properties. In this paper we show another numerical simulation that was performed for imaging with cylindrical hyperlens (imaging device that allows to overcome the diffraction limit using anisotropic metamaterials). Future study will address three-dimensional FVTD parallel code and simulations of light scattering from the core-shell systems, where parallel computing and accurate modelling of metal coat will be of great importance. © 2011 Springer-Verlag Berlin Heidelberg.
Издано: 2011
Физ. характеристика: с.43-49
Цитирование: 1. Bonnet, P., Ferrieres, X., Michielsen, B., Klotz, P.: In: Rao, S.M. (ed.) Time Domain Electromagnetics. Academic, New York (1997) 2. Bonnet, P., Ferrieres, X., Paladian, F., Grando, J., Alliot, J., Fontaine, J.: Electron Lett. 33, 31-32 (1997) 3. Fedoruk, M.P., Munz, C.D., Omnes, P., Schneider, R.: A Maxwell-Lorentz solver for self-consistent particle-field simulations on unstructured grids. Forschungszentrm Karlsruhe GmbH, Karlsruhe (1998) 4. Fumeaux, C., Baumann, D., Leuchtmann, P., Vahldieck, R.: IEEE Trans. Microwave Theory Tech. 52, 1067-1076 (2004) 5. Kildishev, A.V., Chettiar, U.K., Liu, Z., Shalaev, V.M., Kwon, D.-H., Bayraktar, Z., Werner, D.H.: J. Opt. Soc. Am. B 24, A34-A39 (2007) 6. Kildishev, A.V., Klar, T.A., Drachev, V.P., Shalaev, V.M.: Nanophotonics with surface plasmons. In: Shalaev, V.M., Kawata, S. (eds.) Advances in Nano-Optics and Nano- Photonics, ch. 9. Elsevier, Amsterdam (2007) 7. Kildishev, A.V., Narimanov, E.E.: Opt. Lett. 32, 3432-3434 (2007) 8. Lebedev, A.S., Fedoruk, M.P., Shtyrina, O.V.: Vichisl. Mat. i Mat. Fiz. 46, 1302-1317 (2006) (in Russian) 9. Li, J., Engheta, N.: Antennas and Propagation Society International Symposium. IEEE, Los Alamitos (2007) 10. Madsen, N.K., Ziolkowski, R.W.: Electromagnetics 10, 147-161 (1990) 11. Prokopeva, L.Y., Shokin, Y.I., Lebedev, A.S., Shtyrina, O.V., Fedoruk, M.P.: In: Krause, E., Shokin, Y.I., Resch, M.M., Shokina, N. (eds.) Computational Science and High Performance Computing III. The 3rd Russian-German Advanced Research Workshop, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), Novosibirsk, Russia, July 23-27, vol. 101, pp. 122-135 (2008) 12. Shankar, V., Mohammadian, A.H., Hall, W.F.: Electromagnetics 10, 127-145 (1990)