Инд. авторы: Kvasov B.
Заглавие: Parallel mesh methods for tension splines
Библ. ссылка: Kvasov B. Parallel mesh methods for tension splines // Journal of Computational and Applied Mathematics. - 2011. - Vol.236. - Iss. 5. - P.843-859. - ISSN 0377-0427. - EISSN 1879-1778.
Внешние системы: DOI: 10.1016/j.cam.2011.05.019; РИНЦ: 20518910; РИНЦ: 22118078; SCOPUS: 2-s2.0-80055098219; WoS: 000297717100025;
Реферат: eng: This paper addresses the problem of shape preserving spline interpolation formulated as a differential multipoint boundary value problem (DMBVP for short). Its discretization by mesh method yields a five-diagonal linear system which can be ill-conditioned for unequally spaced data. Using the superposition principle we split this system in a set of tridiagonal linear systems with a diagonal dominance. The latter ones can be stably solved either by direct (Gaussian elimination) or iterative methods (SOR method and finite-difference schemes in fractional steps) and admit effective parallelization. Numerical examples illustrate the main features of this approach. © 2011 Elsevier B.V. All rights reserved.
Ключевые слова: Superposition principle; Shape preserving interpolation; Parallel Gaussian elimination; Hyperbolic and thin plate tension splines; Finite-difference schemes in fractional steps; DMBVP;
Издано: 2011
Физ. характеристика: с.843-859
Цитирование: 1. P. Costantini, B.I. Kvasov, and C. Manni On discrete hyperbolic tension splines Adv. Comput. Math. 11 1999 331 354 2. P.E. Koch, and T. Lyche Interpolation with exponential B-splines in tension G. Farin, Geometric Modelling. Computing/Supplementum vol. 8 1993 Springer Wien 173 190 3. B.I. Kvasov Methods of Shape-Preserving Spline Approximation 2000 World Scientific Publishing Co. Pte. Ltd. Singapore 4. B.I. Kvasov Construction of hyperbolic interpolation splines Comput. Math. Math. Phys. 48 2008 539 548 5. M. Marui, and M. Rogina Sharp error bounds for interpolating splines in tension J. Comput. Appl. Math. 61 1995 205 223 6. B.J. McCartin Theory of exponential splines J. Approx. Theory 66 1999 1 23 7. R.J. Renka Interpolation tension splines with automatic selection of tension factors SIAM J. Sci. Stat. Comput. 8 1987 393 415 8. P. Rentrop An algorithm for the computation of exponential splines Numer. Math. 35 1980 81 93 9. M. Rogina, and S. Singer Conditions of matrices in discrete tension spline approximations of DMBVP Ann. Univ. Ferrara 53 2007 393 404 10. N.S. Sapidis, and P.D. Kaklis An algorithm for constructing convexity and monotonicity-preserving splines in tension Comput. Aided Geom. Design 5 1988 127 137 (Pubitemid 18648000) 11. D.G. Schweikert An interpolating curve using a spline in tension J. Math. Phys. 45 1966 312 317 12. H. Spth One Dimensional Spline Interpolation Algorithms 1995 A K Peters Wellesley, MA 13. A. Bouhamedi, and A. Le Méhauté Spline curves and surfaces with tension P.-J. Laurent, A. Le Méhauté, L.L. Schumaker, Wavelets, Images, and Surface Fitting 1994 A K Peters Wellesley, MA 51 58 14. J. Duchon Splines minimizing rotation invariant semi-norms in Sobolev spaces W. Schempp, K. Zeller, Constructive Theory of Functions of Several Variables Lecture Notes in Mathematics vol. 571 1977 Springer 85 100 15. R. Franke Thin plate splines with tension R.E. Barnhill, W. Böhm, Surfaces in CAGD`84 1985 North-Holland 87 95 16. J. Hoschek, and D. Lasser Fundamentals of Computer Aided Geometric Design 1993 A K Peters Wellesley, MA 17. B.I. Kvasov On interpolating thin plate tension splines A. Cohen, J.L. Merrien, L.L. Schumaker, Curve and Surface Fitting: Saint-Malo 2002 2003 Nashboro Press Brentwood 239 248 18. N. Dyn, D. Levin, and A. Luzzatto Exponential reproducing subdivision schemes Found. Comput. Math. 3 2003 187 206 19. M. Fang, W. Ma, and G. Wang A generalized curve subdivision schemes of arbitrary order with a tension parameter Comput. Aided Geom. Design 27 2010 720 733 20. G. Morin, J. Warren, and H. Weimer A subdivision scheme for surfaces of revolution Comput. Aided Geom. Design 18 2001 483 502 (Pubitemid 32518328) 21. N.N. Yanenko, A.N. Konovalov, A.N. Bugrov, and G.V. Shustov Organization of parallel computations and parallelization of Gaussian elimination Chislennye Methody Mekhaniki Sploshnoi Sredy 9 1978 139 146 (in Russian) 22. A.A. Samarskii The Theory of Difference Schemes 2001 Marcel Dekker, Inc. New YorkBasel 23. A.N. Konovalov Introduction to Numerical Methods of Linear Algebra 1993 VO Nauka Novosibirsk (in Russian) 24. B.I. Kvasov Approximation by discrete GB-splines Numer. Algorithms 27 2001 169 188 25. G.H. Golub, and C.F. Van Loan Matrix Computations 1996 John Hopkins University Press Baltimore 26. N.N. Yanenko The Method of Fractional Steps 1971 Springer Verlag New York 27. H. Akima A new method of interpolation and smooth curve fitting based on local procedures J. Assoc. Comput. Machinery 17 1970 589 602 28. Yu.S. Zav`yalov, B.I. Kvasov, and V.L. Miroshnichenko Methods of Spline Functions 1980 Nauka Moscow (in Russian)