Инд. авторы: Квасов Б.И.
Заглавие: Монотонная и выпуклая интерполяция весовыми кубическими сплайнами
Библ. ссылка: Квасов Б.И. Монотонная и выпуклая интерполяция весовыми кубическими сплайнами // Журнал вычислительной математики и математической физики. - 2013. - Т.53. - № 10. - С.1610-1621. - ISSN 0044-4669.
Внешние системы: РИНЦ: 20280318;
Реферат: rus: Конструируются алгоритмы интерполяции дискретных данных весовыми кубическими сплайнами, которые сохраняют монотонность и выпуклость данных. Проведенный анализ позволяет разработать два таких алгоритма с автоматическим выбором параметров формы (веса): один для сохранения монотонности данных и второй для сохранения выпуклости данных. Приведены результаты численных расчетов. Библ. 24. Фиг. 9. Табл. 8.
Издано: 2013
Физ. характеристика: с.1610-1621
Цитирование: 1. Квасов Б.И. Методы изогеометрической аппроксимации сплайнами. М.: Физматлит, 2006. 2. Goodman T.N.T. Shape preserving interpolation by curves // J. Levesley, I. Anderson, J. Mason (eds.) Algorithms for Approximation IV. University of Huddersfield, 2002. P. 24–35. 3. Fritsch F.N., Carlson R.E. Monotone piecewise cubic interpolation // SIAM J. Numer. Anal. 1980. V. 17. P. 238–246. 4. Lamberti P., Manni C. Shape preserving @ functional interpolation via parametric cubics // Numer. Algorithms. 2001. V. 28. P. 229–254. 5. Schumaker L.L. On shape preserving quadratic spline interpolation // SIAM J. Numer. Anal. 1983. V. 20. № 4. P. 854–864. 6. Yan Z. Piecewise cubic curve fitting algorithms // Math. Comput. 1987. V. 49. № 179. P. 203–213. 7. Cinquin Ph. Splines unidimensionnelles sous tension et bidimensionnelles parametrоs: deux applications mнicales. These, Universite de Saint-Etienne, 28 octobre 1981. 8. Salkauskas K. @ splines for interpolation of rapidly varying data // Rocky Mountain J. Math. 1984. V. 14. № 1. P. 239–250. 9. Salkauskas K., Bos L. Weighted splines as optimal interpolants // Rocky Mountain J. Math. 1992. V. 22. P. 705–717. 10. Bos L., Salkauskas K. Limits of weighted splines based on piecewise constant weight functions // Rocky Mountain J. Math. 1993. V. 23. P. 483–493. 11. Foley T.A. Local control of interval tension using weighted spline // Comput. Aided Geom. Des. 1986. V. 3. P. 281–294. 12. Foley T.A. Interpolation with interval and point tension control using cubic weighted splines // ACM TOMS. 1987. V. 13. P. 68–96. 13. Foley T.A. A shape preserving interpolant with tension controls // Comput. Aided Geom. Des. 1988. V. 5. P. 105–118. 14. Kim Tae-wan, Kvasov B.I. A shape-preserving approximation by weighted cubic splines // J. Comput. Appl. Math. 2012. V. 236. P. 4383–4397. 15. Мирошниченко В.Л. Изогеометрические свойства и оценки ошибки аппроксимации весовыми кубическими сплайнами // Сплайны и их приложения. Новосибирск, 1995. Вып. 154: Вычислительные системы. С. 127–154. 16. Мирошниченко В.Л. Достаточные условия монотонности и выпуклости для интерполяционных сплайнов класса @ // Приближение сплайнами. Новосибирск, 1990. Вып. 137: Вычислительные системы. С. 31–57. 17. Farin G. Curves and Surfaces for Computer Aided Geometric Design. San Diego: Academic Press, 2002. 18. Pena J.M. (Ed.) Shape Preserving Representations in Computer-Aided Geometric Design. New York: Nova Science Publishers, 1999. 19. Costantini P. On monotone and convex spline interpolation // Math. Comp. 1986. V. 46. P. 203–214. 20. Schmidt J.W., Hess W. Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation // Elem. Math. 1984. V. 39. P. 85–96. 21. Akima H. A new method of interpolation and smooth curve fitting based on local procedures // J. Assoc. Comput. Mach. 1970. V. 17. P. 589–602. 22. Spath H. One Dimensional Spline Interpolation Algorithms. Massachusetts: A. K. Peters, 1995. 23. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. М.: Наука, 1980. 24. Han X. Convexity-preserving piecewise rational quartic interpolation // SIAM J. Numer. Anal. 2008. V. 46. № 2. P. 920–929.