Инд. авторы: Frewer M., Oberlack M., Grebenev V.N.
Заглавие: The Dual Stream Function Representation of an Ideal Steady Fluid Flow and its Local Geometric Structure
Библ. ссылка: Frewer M., Oberlack M., Grebenev V.N. The Dual Stream Function Representation of an Ideal Steady Fluid Flow and its Local Geometric Structure // Mathematical Physics, Analysis and Geometry. - 2014. - Vol.17. - Iss. 1-2. - P.3-25. - ISSN 1385-0172. - EISSN 1572-9656.
Внешние системы: DOI: 10.1007/s11040-014-9138-5; РИНЦ: 23973517; РИНЦ: 21869775; SCOPUS: 2-s2.0-84905221863; WoS: 000339892900001;
Реферат: eng: Using the methodology of Lie groups and Lie algebras we determine new symmetry and equivalence classes of the stationary three-dimensional Euler equations by introducing potential functions that are based on the so-called dual stream function representation of the steady state velocity field u(x, y, z) = a double dagger lambda(x, y, z) x a double dagger mu(x, y, z), which itself can only be defined locally. In particular an infinite dimensional Lie algebra for Beltrami fields is gained. We show that this Lie algebra generates canonical transformations of a Hamiltonian flow for the dual pair of variables and . It enables us to make the classification of a two-dimensional Riemannian manifold wherein presents the local coordinates of . Furthermore the local geometry of this manifold is explored in detail. As a result an infinite set of locally conserved currents and charges in the context of a conformal field theory is finally observed.
Ключевые слова: Shape classification; Equivalence transformation; Beltrami fields; Dual stream function; Euler equations; Symmetries;
Издано: 2014
Физ. характеристика: с.3-25
Цитирование: 1. Batchelor, G. K.: An Introduction to Fluid Dynamics. Cambridge Univeristy Press, Cambridge (1967). 2. Pope, S. B.: Turbulent Flows. Cambridge University Press, Cambridge (2000). 3. Davidson, P. A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, London (2004). 4. Constantin, P.: On the Euler equations of incompressible fluids. Bull A Math. Soc. 44(4), 603-621 (2007). 5. Etnyre, J., Ghrist, R.: Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture. Nonlinearity 13, 441-458 (2000). 6. Arnold, V. I., Khesin, B. A.: Topological Methods in Hydrodynamics. Springer-Verlag, New York Berlin Heidelberg (1998). 7. Arnold, V. I.: Sur la topologie des e'coulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 17-20 (1965). 8. Moffatt, H. K., Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281-312 (1992). 9. McLaughlin, D., Pironneau, O.: Some notes on periodic Beltrami fields in Cartesian geometry. J. Math. Phys. 32(3), 797-804 (1990). 10. Etnyre, J., Ghrist, G.: Generic hydrodynamic instability of curl eigenfields. arXiv: 0306310 (2003). 11. Naso, A., Monchaux, R., Chavanis, P. H., Dubrulle, B.: Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys. Rev. E. 81, 066318 (2010). 12. Arnold, V. I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989). 13. Dombre, T., Frisch, U., Green, J. M., He'non, M., Mehr, A., Soward, A. M.: Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353-391 (1986). 14. Amari, T., Boulbe, C., Boulmezaoud, T. Z.: Computing Beltrami fields. SIAM 31(5), 3217-3254 (2009). 15. Pelz, R., Yakhot, V., Orszag, S. A., Shtilman, L., Levich, E.: Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54, 2505-2509 (1985). 16. Yakhot, V., Orszag, S. A., Yakhot, A., Panda, R., Frisch, U., Kraichnan, R. H.: Weak interactions and local order in strong turbulence. Num. Sim. Heat Transf. Turbul. 4, 17-58 (1987). 17. Tsinober, A., Levich, E.: On the nature of the three-dimensional coherent structures in turbulent flows. Phys. Lett. A 99, 321-324 (1983). 18. Brachet, M. E., Meneguzzi, M., Sulem, P. L.: Small-scale dynamics of high Reynolds-number two-dimensional turbulence. Phys. Rev. Lett. 57, 683-686 (1986). 19. Moffat, H. K.: Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. J. Fluid Mech. 166, 359-378 (1986). 20. Moffat, H. K.: Structure and stability of solutions of the Euler equations: a Lagrangian approach. Phil. Trans. Roy. Soc. London. Sr. A 333(N1631), 321-342 (1990). 21. Yih, C. S.: Stream functions in three-dimensional flows. La Houlle Blanche 3, 445-450 (1957). 22. Reztsov, A. V., Mallinson, G. D.: Dual stream functions for 3D swirling flows. In: Proceedings of 13th Australian Fluid Mechanics Conference, pp. 179-182. Melbourne (1998). 23. Zhenquan, L., Mallinson, G. D.: Dual stream function vizualization of flows fields dependent on two variables. Comput. Visual Sci. 9, 33-41 (2006). 24. Beale, S. B.: Visualisation of three-dimensional flow fields using two stream functions. In: Proceedings of 10th International Symposium Transactions Phenomena (1979). 25. Greywall, M. S.: Streamwise computation of three-dimensional flows using two stream functions. J. Fluids Eng. 115, 233-238 (1993). 26. Vekua, I. N.: Generalized Analytical Functions. Nauka, Moscow (1988). 27. Zeitunyan, R. K.: Theory of three-dimensional vorticity flows of ideal fluids. Inst. Pure Appl. Mech. Novosibirsk. Numer. Meth. Continuum Mech. 5, 71-101 (1977). 28. Keller, J.: A pair of stream fucntions for three-dimensional vortex flows. ZAMP 47, 821-836 (1996). 29. Zaslavskii, G. M., Sagdeev, R. Z., Usikov, D. A., Chernikov, A. A.: Weak Chaos and Quasiregular Structures. Nauka, Moscow (2002). 30. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932). 31. Graham, C. R.: Clebsch representation near points where velocity vanishes. Phys. Fluids 12(4), 744-746 (2000). 32. Zakharov, V. E., Kuznetsov, E. A.: Hamiltonian formalism for nonlinear waves. Phisics-Uspekhi 40(11), 1087-1116 (1997). 33. Kuznetsov, E. A.: Mixed Lagrangian-Euler description of vortical flows for ideal and viscous fluids. J. Fluid Mech. 600, 167-180 (2008). 34. Fadeev, L. D.: Some connections on the many-dimensional solitons. Lett. Math. Phys. 289, 1-4 (1976). 35. Ovsynnikov, L. V.: The Clebsch equations and new models of vortex fluid motions. In: Abstract of the 9th Confrenece of Pura and Applied Mechanics. 2, 140 (2006). 36. Ovsynnikov, L. V.: Group Analysis of Differential Equations. Nauka, Moscow (1978). 37. Dubrovin, B. A., Fomenko, T. A., Novikov, S. P.: Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag, New York Berlin Heidelberg (1984). 38. Sabitov, I. K. h.: Isometric transformations of a surface inducing conformal maps of the surface into itself. Sb. Math. 189(1), 119-132 (1998). 39. Megrabov, A. G.: Group spliting and Lax representation. Dokl. Math. 67(3), 335-349 (2003). 40. Meleshko, S. V.: Homogeneous autonomic systems with three independent variables. J. Appl. Math. Mech. 58, 857-863 (1994). 41. Schottenloher, M.: A mathematical introduction to conformal field theory. In: Lecture Notes in Physics, p. 759. Springer, Berlin Heidelberg (2008).