Цитирование: | 1. Batchelor, G. K.: An Introduction to Fluid Dynamics. Cambridge Univeristy Press, Cambridge (1967).
2. Pope, S. B.: Turbulent Flows. Cambridge University Press, Cambridge (2000).
3. Davidson, P. A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, London (2004).
4. Constantin, P.: On the Euler equations of incompressible fluids. Bull A Math. Soc. 44(4), 603-621 (2007).
5. Etnyre, J., Ghrist, R.: Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture. Nonlinearity 13, 441-458 (2000).
6. Arnold, V. I., Khesin, B. A.: Topological Methods in Hydrodynamics. Springer-Verlag, New York Berlin Heidelberg (1998).
7. Arnold, V. I.: Sur la topologie des e'coulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 17-20 (1965).
8. Moffatt, H. K., Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281-312 (1992).
9. McLaughlin, D., Pironneau, O.: Some notes on periodic Beltrami fields in Cartesian geometry. J. Math. Phys. 32(3), 797-804 (1990).
10. Etnyre, J., Ghrist, G.: Generic hydrodynamic instability of curl eigenfields. arXiv: 0306310 (2003).
11. Naso, A., Monchaux, R., Chavanis, P. H., Dubrulle, B.: Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys. Rev. E. 81, 066318 (2010).
12. Arnold, V. I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989).
13. Dombre, T., Frisch, U., Green, J. M., He'non, M., Mehr, A., Soward, A. M.: Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353-391 (1986).
14. Amari, T., Boulbe, C., Boulmezaoud, T. Z.: Computing Beltrami fields. SIAM 31(5), 3217-3254 (2009).
15. Pelz, R., Yakhot, V., Orszag, S. A., Shtilman, L., Levich, E.: Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54, 2505-2509 (1985).
16. Yakhot, V., Orszag, S. A., Yakhot, A., Panda, R., Frisch, U., Kraichnan, R. H.: Weak interactions and local order in strong turbulence. Num. Sim. Heat Transf. Turbul. 4, 17-58 (1987).
17. Tsinober, A., Levich, E.: On the nature of the three-dimensional coherent structures in turbulent flows. Phys. Lett. A 99, 321-324 (1983).
18. Brachet, M. E., Meneguzzi, M., Sulem, P. L.: Small-scale dynamics of high Reynolds-number two-dimensional turbulence. Phys. Rev. Lett. 57, 683-686 (1986).
19. Moffat, H. K.: Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. J. Fluid Mech. 166, 359-378 (1986).
20. Moffat, H. K.: Structure and stability of solutions of the Euler equations: a Lagrangian approach. Phil. Trans. Roy. Soc. London. Sr. A 333(N1631), 321-342 (1990).
21. Yih, C. S.: Stream functions in three-dimensional flows. La Houlle Blanche 3, 445-450 (1957).
22. Reztsov, A. V., Mallinson, G. D.: Dual stream functions for 3D swirling flows. In: Proceedings of 13th Australian Fluid Mechanics Conference, pp. 179-182. Melbourne (1998).
23. Zhenquan, L., Mallinson, G. D.: Dual stream function vizualization of flows fields dependent on two variables. Comput. Visual Sci. 9, 33-41 (2006).
24. Beale, S. B.: Visualisation of three-dimensional flow fields using two stream functions. In: Proceedings of 10th International Symposium Transactions Phenomena (1979).
25. Greywall, M. S.: Streamwise computation of three-dimensional flows using two stream functions. J. Fluids Eng. 115, 233-238 (1993).
26. Vekua, I. N.: Generalized Analytical Functions. Nauka, Moscow (1988).
27. Zeitunyan, R. K.: Theory of three-dimensional vorticity flows of ideal fluids. Inst. Pure Appl. Mech. Novosibirsk. Numer. Meth. Continuum Mech. 5, 71-101 (1977).
28. Keller, J.: A pair of stream fucntions for three-dimensional vortex flows. ZAMP 47, 821-836 (1996).
29. Zaslavskii, G. M., Sagdeev, R. Z., Usikov, D. A., Chernikov, A. A.: Weak Chaos and Quasiregular Structures. Nauka, Moscow (2002).
30. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932).
31. Graham, C. R.: Clebsch representation near points where velocity vanishes. Phys. Fluids 12(4), 744-746 (2000).
32. Zakharov, V. E., Kuznetsov, E. A.: Hamiltonian formalism for nonlinear waves. Phisics-Uspekhi 40(11), 1087-1116 (1997).
33. Kuznetsov, E. A.: Mixed Lagrangian-Euler description of vortical flows for ideal and viscous fluids. J. Fluid Mech. 600, 167-180 (2008).
34. Fadeev, L. D.: Some connections on the many-dimensional solitons. Lett. Math. Phys. 289, 1-4 (1976).
35. Ovsynnikov, L. V.: The Clebsch equations and new models of vortex fluid motions. In: Abstract of the 9th Confrenece of Pura and Applied Mechanics. 2, 140 (2006).
36. Ovsynnikov, L. V.: Group Analysis of Differential Equations. Nauka, Moscow (1978).
37. Dubrovin, B. A., Fomenko, T. A., Novikov, S. P.: Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag, New York Berlin Heidelberg (1984).
38. Sabitov, I. K. h.: Isometric transformations of a surface inducing conformal maps of the surface into itself. Sb. Math. 189(1), 119-132 (1998).
39. Megrabov, A. G.: Group spliting and Lax representation. Dokl. Math. 67(3), 335-349 (2003).
40. Meleshko, S. V.: Homogeneous autonomic systems with three independent variables. J. Appl. Math. Mech. 58, 857-863 (1994).
41. Schottenloher, M.: A mathematical introduction to conformal field theory. In: Lecture Notes in Physics, p. 759. Springer, Berlin Heidelberg (2008).
|