Инд. авторы: Medvedev S.B.
Заглавие: Poincare normal forms for partial differential equations
Библ. ссылка: Medvedev S.B. Poincare normal forms for partial differential equations // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 1999. - Vol.455. - Iss. 1991. - P.4061-4075. - ISSN 1364-5021. - EISSN 1471-2946.
Внешние системы: DOI: 10.1098/rspa.1999.0490; РИНЦ: 13314636; WoS: 000084083700010;
Реферат: eng: An extension of Poincare normal-form theory for systems of partial differential equations, which have linear ordinary equations as a main part, is obtained. Poincare normal forms for the shallow-water equation on a beta-plane and in large scale (with respect to Rossby radius) for the variable Coriolis parameter are found. The normal forms of the shallow-water equations contain the Charney equation and higher approximation equations for Rossby waves and describe the nonlinear interaction of Rossby and inertia-gravity waves.
Издано: 1999
Физ. характеристика: с.4061-4075