Инд. авторы: | Gorban A.N., Shokin Yu.I., Verbitskii V.I. |
Заглавие: | Simultaneously dissipative operators and the infinitesimal wrapping effect in interval spaces |
Библ. ссылка: | Gorban A.N., Shokin Yu.I., Verbitskii V.I. Simultaneously dissipative operators and the infinitesimal wrapping effect in interval spaces // Вычислительные технологии. - 1998. - Vol.2. - Iss. 4. - P.16-48. - ISSN 1560-7534. - EISSN 2313-691X. |
Внешние системы: | РИНЦ: 13008104; |
Реферат: | eng: The paper is devoted to some applications of the theory of simultaneously dissipative operators to interval analysis and chemical cinetics. The main object under study is a harmful "wrapping effect" that widely reveals itself in computer solution of evolutionary differential equations with interval parameters. We managed to prove that the infinrtesimal wrapping effect is "typical", which explais the low efficacy of the traditional stepwise methods for the numerical solution of interval differential problems. rus: Работа посвящена приложениям теории совместно диссипативных операторов к интервальному анализу и химической кинетике. Главным объектом исследования является нежелательный "эффект упаковывания", широко проявляющийся при численном решении на ЭВМ эволюционных дифференциальных уравнений с интервальными параметрами. Основной результат работы - доказательство типичности эффекта упаковывания в малом, что объясняет низкую эффективность традиционных пошаговых методов численного решения интервальных дифференциальных задач. |
Издано: | 1998 |
Физ. характеристика: | с.16-48 |
Цитирование: | 1. MOORE R. E. Interval analysis. Prentice-Hall, N.-Y., 1966. 2. KALMYKOV S.A., SHOKIN Yu.I., YULDASHEV Z.Kh. Methods of interval analysis. Nauka, Novosibirsk, 1986. 3. CHERNOUSKO F. L. Optimal guaranteed estimations of uncertainty by means of ellipsoides. Izv. AN SSSR. Tekhnich. kibernetika, No. 5, 1980, 5-10. 4. KRACHT M., SCHOEDER G. Zur Intervallrechnung in linear Raumen. Computing, 11, 1973, 73-79. 5. RATSCHEK H. Nichtnumerische aspecte der intervallarithmetik. Interval Mathematics, Springer - Verlag, Berlin-Heidelberg, 1975, 48-74. 6. KURATOVSKII K. Topology. Vol. 1, Mir, Moscow, 1966. 7. LOZINSKY S. M. Error estimation of numerical integration of ordinary differential equations. Izv. vuzov. Ser. matem., No. 5, 1958, 52 90. 8. Bylov B.F., VlNOGRAD P. A., Grobman D.M., Nemytskii V. V. Lyapunov Index Theory and its Applications to the Problems of Stability. Nauka, Moscow, 1966. 9. VERBITSKII V. I., GORBAN A.N. Simultaneously Dissipative Operators and Their Applications in Dynamical Systems. Krasnoyarsk, 1987 (Prepr. /AS USSR, SB, Computing Center). 10. VERBITSKII V. I., GORBAN A.N. Thermodynamical restrictions and quasi-termo-dynamicity conditions in chemical kinetics. Mathematical Problems of Chemical Kinetics, Ed. by K. I. Zamaraev and G. S. Yablonskn, Nauka, Novosibirsk, 1989, 42-83. 11. BURBAKI N. Lie Groups and Algebras. Mir, Moscow, 1976. 12. VOLPERT A. I., KHUDYAEV S. I. Analysis in the Classes of Discontinuous Functions and Equations of Mathematical Physics. Nauka, Moscow, 1975. 13. GORBAN A. N., BYKOV V. I., YABLONSKII G. S. Essays on Chemical Relaxation. Nauka, Novosibirsk, 1986. 14. GOLSHTEIN Ye. G., Yudin D.B. New Tendencies in Linear Programming. Sov. radio, Moscow, 1966. 15. Verbitskii V. I., Gorban A. N., Utjubaev G.Sh., Shokin Yu.I. Moore effect in interval spaces. Dokl. AN SSSR, 304, No. 1, 1989, 17-21. 16. Bykov V. I., Verbitskii V. I., Gorban A. N. On one estimation of solution of Cauchy problem with uncertainty in initial data and rigt part. Izv. vuzov. Ser. matem., No. 12, 1991, 5-8. 17. VERBITSKII V. I., GORBAN A.N. Simultaneously dissipative operators and their applications. Sib. matem. jurnal, 33, No. 1, 1992, 26-31. 18. VERBITSKII V. I., GORBAN A.N. Simultaneously dissipative operators and quasi-thermodynamicity of the chemical reactions systems. Advances in Modelling and Simulation, 26, No. 1, 1991, 13-21. 19. VERBITSKII V. I., GORBAN A. N. On one approach to the analysis of stability of nonlinear systems and differential inclusions. Advances in Modelling and Analysis, A, 19, No 4, 1994, 15-27. 20. VERBITSKII V. I., GORBAN A. N. Stability analysis and solution evaluation for nonlinear systems by "Jacobian fields"and Liapunov norms. AMSE Transactions, Scientific Siberian, A, Vol. 4, Dynamics, 1992, 104-133. |