Инд. авторы: | Ryabko B.Y. |
Заглавие: | Compression-based Methods for Nonparametric Density Estimation, On-Line Prediction, Regression and Classification for Time Series. |
Библ. ссылка: | Ryabko B.Y. Compression-based Methods for Nonparametric Density Estimation, On-Line Prediction, Regression and Classification for Time Series. // 2008 IEEE Information Theory Workshop: IEEE Information Theory Workshop (MAY 05-08, 2008). - 2008. - Porto. - P.271-275. - ISBN: 978-1-4244-2269-2. |
Внешние системы: | DOI: 10.1109/ITW.2008.4578667; РИНЦ: 15053389; SCOPUS: 2-s2.0-51849157344; WoS: 000259299000061; |
Реферат: | eng: We address the problem of nonparametric estimation of characteristics for stationary and ergodic time series. We consider finite-alphabet time series and the real-valued ones and the following problems: estimation of the (limiting) probability P(u(0) ... u(s)) for every s and each sequence u(0) ... u(s) of letters from the process alphabet (or estimation of the density p(x(0), ..., x(s)) for real-valued time series), so-called on-line prediction, where the conditional probability P(x(t+1)/x(1)x(2) ... x(t)) (or the conditional density p(x(t+1)/x(1)x(2) ... x(t))) should be estimated (in the case where x(1)x(2) ... x(t) is known), regression and classification (or so-called problems with side information). We show that any universal code (or a universal data compressor) can be used as a basis for constructing asymptotically optimal methods for the above problems. |
Ключевые слова: | Time-series; On-line prediction; Nonparametric density estimation; Non-parametric estimations; Ergodic; Time series analysis; Ketones; Information theory; Food processing; Estimation; Cybernetics; Maximum likelihood estimation; |
Издано: | Porto: , 2008 |
Физ. характеристика: | с.271-275 |
Конференция: | Название: 2008 IEEE Information Theory Workshop Город: Porto Страна: Portugal Даты проведения: 2008-05-05 - 2008-05-08 |