Цитирование: | 1. Cullum J., Willoughby R. A. Computing eigenvalues of very large symmetric matrices - an implementation of a Lanczos algorithm with no reorthogonalization // Journ. of Comput. Phys. 1981.44. P. 329.
2. Cullum J. K., Willoughby R. A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Vol. 1. Philadelphia: Society for Industrial and Applied Mathematics, 2002.
3. Matsekh A. M. The Godunov-inverse iteration: a fast and accurate solution to the symmetric tridiagonal eigenvalue problem // Appl. Numer. Math. 2005. 54. P. 208.
4. Годунов С. К., Антонов А. Г., Кирилюк О. П., Костин В. И. Гарантированная точность решения систем линейных уравнений в евклидовых пространствах. Новосибирск: Наука. 1988.
5. Paige С. С. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix // Journ. of the Institute of Mathematics and Its Applications. 1976. 18. P. 341.
6. Bai Z., Demmel J., Dongarra J. et al. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia: SIAM, 2000.
7. SorensenD. C. Numerical methods for large eigenvalue problems //ActaNumer. 2002.11. P. 519.
8. Ipsen I. C. F. Computing an eigenvector with inverse iteration // SIAM Rev. 1997.39, N2. P. 254.
9. Parlett B. N., Dhillon I. S. Fernando's solution to Wilkinson's problem: An application of double factorization // Lin. Alg. Appl. 1997. 267. P. 247.
10. Wilkinson J.H. The Algebraic Eigenvalue Problem. Oxford: Oxford University Press, 1965.
11. Dhillon I. S. A new О («") algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem. Berkeley: University of California, 1997. UCBTech. Report N UCB//CSD-97-971.
12. Годунов С. К. Современные аспекты линейной алгебры. Новосибирск: Науч. книга, 1997.
13. Demmel J. W., Eisenstat S. С., Gilbert J. R. et al. A supernodal approach to sparse partial pivoting // SIAM Journ. Matrix Analys. and Appl. 1999. 20, N 3. P. 720.
14. Fernando K. V. Accurately counting singular values of bidiagonal matrices and eigenvalues of skew-symmetric tridiagonal matrices //SIAM Journ. Matrix Analys. and Appl. 1998.19. N 2. P. 373.
15. Learning Matlab7. Matlab&Simulink Student Version, 2004.
16. Lehoucq R. В., Sorensen D. C., Yang C. ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnold! Methods. Philadelphia: SIAM Publications, 1998.
|